Cho tam giác ABC vuông tại A. AH là đường cao, AD là đường trung tuyến. CMR: BM/CN = tan3 C
Cho tam giác ABC có ba góc nhọn và AH là đường cao
a, Chứng minh: A B 2 + C H 2 = A C 2 + B H 2
b, Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. A B 2 + A C 2 = B C 2 2 + 2 A M 2
2. A C 2 - A B 2 = 2 B C . H M (với AC > AB)
Cho tam giác ABC vuông tại A, đường cao AD
a. Chứng minh : Δ ABD đồng dạng Δ CBA, từ đó suy ra : AB2 = BC.BD
b. Vẽ BM là đường phân giác của góc BAC, BM cắt AD tại I. Chứng minh : \(\dfrac{IA}{ID}\)X\(\dfrac{MA}{MC}\)= 1
c. Vẽ AH vuông góc với MB tại H. Chứng minh: Góc CMB = Góc BDH
Cho tam giác ABC vuông tại A. Đường cao AH, trung tuyến BM, phân giác CD. CMR: sin B = căn 5 -1 /2
Cho tam giác ABC vuông tại A, AB = 6cm, tanB = 5 12 . Hãy tính độ dài đường cao AH và trung tuyến BM của tam giác ABC
Cho tam giác ABC vuông tại A, AB = 24cm, Sin B=5/13.Tính độ dài đường cao AH và trung tuyến BM của tam giác ABC.
Cho tam giác ABC vuông cân tại A có đường trung tuyến BM. Kẻ CD vuông góc với BM tại D và DH vuông góc AC tại H.Chứng minh AH=3HD
Cho tam giác ABC vuông tại A ,biết đường cao AH,đường trung tuyến BM,đường phân giác CD đồng quy.Tính tỉ số AB/AC
Cho tam giác ABC vuông tại A ,biết đường cao AH,đường trung tuyến BM,đường phân giác CD đồng quy.Tính tỉ số AB/AC