a. Tứ giác AMHN là hình gì? Chứng minh?
b. Lấy D sao cho M là trung điểm của DH, lấy E sao cho N là trung điểm HE, Chứng minh rằng: 3 điểm D, A, E thẳng hàng.
c. Chứng minh rằng: BDEC là hình thang.
d. Chứng minh rằng: DE = MN + AH.
a/
\(HM\perp AB;AC\perp AB\Rightarrow AN\perp AB\) => HM//AN
\(HN\perp AC;AB\perp AC\Rightarrow AM\perp AC\) => HN//AM
=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có \(\widehat{A}=90^o\) (gt)
=> AMHN là HCN (hình bình hành có 1 góc trong bằng 90o là HCN)
b/ Nối A với D và A với E
Xét tg vuông AMD và tg vuông AMH có
MD=MH; AM chung => tg AMD = tg AMH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{MAD}=\widehat{MAH}\)
Tương tự khi xét tg vuông ANH và tg vuông ANE
=> tg ANH = tg ANE \(\Rightarrow\widehat{NAH}=\widehat{NAE}\)
\(\Rightarrow\widehat{MAD}+\widehat{NAE}=\widehat{MAH}+\widehat{NAH}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{MAD}+\widehat{NAE}+\widehat{A}=\widehat{DAE}=90^o+90^o=180^o\)
=> D; A; E thẳng hàng
c/
Xét tg vuông MBD và tg vuông MBH có
MD=MH (gt)
MB chung
=> tg MBD = tg MBH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau) => BD=BH
Xét tg ADB và tg AHB có
tg AMD = tg AMH (cmt) => AD=AH
AB chung
BD=BH (cmt)
=> tg ADB = tg AHB \(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^o\Rightarrow BD\perp DE\)
C/m tương tự ta cũng có \(CE\perp DE\)
=> BD//CE (cùng vuông góc với DE)
=> BDEC là hình thang
d/
Ta có
tg AMD = tg AMH (cmt) => AD=AH
c/m tương tự có
tg AHN = tg ANE => AE=AH
=> AD=AE
Xét tg vuông DHE có
AD=AE (cmt)
\(AH=AD=AE=\dfrac{DE}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Ta có
MD=MH; NE=NH => MN là đường trung bình của tg DHE
\(\Rightarrow MN=\dfrac{DE}{2}\)
\(\Rightarrow MN+AH=\dfrac{DE}{2}+\dfrac{DE}{2}=DE\)