Cho tam giác ABC vuông tại A, đường cao AH. Cho AM là đường trung tuyến. Biết BH = 9cm, CH = 16cm.
a) Tính diện tích tam giác AHM, chu vi và diện tích tam giác ABC.
b) Gọi Q, P lần lượt là trung điểm của BH, AH. Chứng minh: Tam giác ABQ đồng dạng với CAP
c)Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:Tam giác ABI đồng dạng với IDO.
Cho tam giác ABC vuông tại A, đường cao AH. Cho AM là đường trung tuyến. Biết BH = 9cm, CH = 16cm.
a) Tính diện tích tam giác AHM, chu vi và diện tích tam giác ABC.
b) Gọi Q, P lần lượt là trung điểm của BH, AH. Chứng minh: Tam giác ABQ đồng dạng với CAP
c)Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:Tam giác ABI đồng dạng với IDO.
Cho tam giác ABC vuông tại A, đường cao AH.
a) Viết các cặp tam giác đồng dạng với nhau.
b) Chứng minh rằng: \(AB^2=BH.BC\). Tìm hệ thức tương tự.
c) Chứng minh rằng: AH.BC = AB.AC
d) Cho AM là đường trung tuyến. Biết BH = 9cm, CH = 16cm. Tính diện tích tam giác AHM, chu vi và diện tích tam giác ABC.
e) Gọi Q, P lần lượt là trung điểm của BH, AH. Chứng minh: Tam giác ABQ đồng dạng với CAP
b)Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:Tam giác ABI đồng dạng với IDO.
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Bài 5: Cho giác ABC vuông tại A có đường cao AH (H thuộc BC), kẻ HD vuông góc với AC tại D (D thuộc AC). a) Chứng minh: tâm giác DAH đồng dạng với tam giác HAC. b) Gọi O là trung điểm của AB, OC cắt AH, HD lần lượt tại K và I. Chứng minh: HI = ID. c) Chứng minh: AD.AC = BH.HC d) Chúng minh: ba điểm B, K, D thắng hàng.
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA và AH.BC=AB.AC
b) Gọi M là trung điểm của AC. Đường thẳng qua M và vuông góc với AC cắt BC tại O. Chứng minh CM.CA=CH.CO
c) Gọi I là trung điểm AH. Chứng minh góc MBC = góc ABI
d) Gọi K là giao điểm của BI và OM. Chứng minh KC vuông góc với BC
Giải giúp mình gấp. Mình cảm ơn trước
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
cho tam giác ABC vuông tại A (AB<AC) ,đường cao AH
a) cm/ tam giác ABC đồng dạng với tam giác HBA ,
b) tính BC, AH biết AB=6cm, AC=8cm
c) phân giác góc ABC cắt AC tại D, kẻ CN vuông góc với BD tại N. cm/ tam giác AND với tam giác BDC đồng dạng
d) gọi M là trung điểm BC. cm/ MN là đường trung trực của đoạn thẳng AC
các bạn giúp mình với. Mịnh cần gấp
Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)