Cho tam giác ABC vuông tại A.đương cao AH. Gọi M,N lần lượt là các điểm đối xứng của H qua AB và AC.
a) CM: A,B,H,M cùng thuộc một đường tròn và AC là tiếp tuyến của đường tròn đo.
b) CM: đường tròn có đường kính BC tiếp xúc với MN tại A.
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn ( ) O . Gọi M là trung điểm của cạnh BC và N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:
b) CD đi qua trung điểm của đường cao AH của tam giác ABC .
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lược là các điểm đồi xứng cua H qua AB, AC
a) C/m 4 điểm A, H, B, M nằm trên 1 đường tròn và AC là tiếp tuyến của đường tròn đó
b) C/m đtròn đkính BC tiếp xúc MN tại A
Cho tam giác ABC vuông tại A, đường cao AH. AB = 3cm, BC = 5cm. Gọi M, N lần lượt là trung điểm của BC và BH. Xác định vị trí tương đối của điểm M, N, H đối với đường tròn đường kính AC
Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm, kẻ AH vuông góc với BC (H thuộc BC). Vẽ đường tròn (O) đi qua điểm A và tiếp xúc với cạnh BC tại điểm B, đường tròn (I) đi qua điểm A và tiếp xúc với cạnh BC tại điểm C
a/ Tính độ dài của AH
b/Chứng minh rằng: Các đường tròn (O) và (I) tiếp xúc ngoài với nhau tại A
c/ Gọi M là trung điểm của BC. Chứng minh rằng: Tam giác IMO vuông và OI là tiếp tuyến của đường tròn đường kính BC
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Một đường thẳng qua A cắt đường tròn đường kính AB tại M, cắt đường tròn đường kính AC tại N (A nằm giữa 2 điểm M,N). Gọi I là giao điểm của AB và HM, K là giao điểm của AC và HN
a) chứng minh H nằm trên 2 đường tròn đường kính AB và AC
b) chứng minh tứ giác AIHK nội tiếp
c) chứng minh IK // MN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN