cho tam giác vuông ABC tại A, đường cao AH. Gọi I là trung điểm của AH. Đường vuông góc với BC tại C cắt đường thẳng BI tại D. CMR: DA=DC
Cho tam giác ABC vuông tại A, đường cao AH, HB=9cm; HC=16cm. a) chứng minh : AB^2 = HB.BC b) Tính AB; AC; AH c) Phân giác của góc B cắt AH tại I, từ I kẻ đường thẳng song song với BC cắt AC tại K. Chứng minh AK/KC = AB/HC d) Gọi E là giao điểm của BI với AC chứng minh tam giác KIE đồng dạng với tam giác ABI
Cho tam giác ABC vuông tại A, đường cao AH. Gọi Q, P lần lượt là trung điểm của BH, AH. Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:
a) Tam giác ABQ đồng dạng với CAP
b)Tam giác ABI đồng dạng với IDO.
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA và AH.BC=AB.AC
b) Gọi M là trung điểm của AC. Đường thẳng qua M và vuông góc với AC cắt BC tại O. Chứng minh CM.CA=CH.CO
c) Gọi I là trung điểm AH. Chứng minh góc MBC = góc ABI
d) Gọi K là giao điểm của BI và OM. Chứng minh KC vuông góc với BC
Giải giúp mình gấp. Mình cảm ơn trước
Cho tam giác ABC vuông tại A , AB = 9cm , AC = 12cm , đường cao AH , đường phân giác BD . Kẻ DE vuông góc với BC , đường thẳng DE cắt đường thẳng AB tại F
a, Tính BC , AH
b,Chứng minh tam giác EBF đồng dạng với tam giác EDC
c, Gọi I là giao điểm của AH và BD . Chứng minh : AB . BI = BH.BD
d, Chứng minh BD vuông góc CF
cho tam giác ABC nhọn , các đường cao BD và CE cắt nhau tại H . Đường vuông góc AB tại B và đường vuông góc với AC tại C cắt nhau tại K . Gọi M là trung điểm của BC . Chứng minh
a , Chứng minh ADB∼ΔAEC và ΔAED ~ΔACB
d, AH cắt BC tại O . Chứng minh : BE . BA + CD . CA = BC2
g, cho góc ACB = 45o , gọi P là trung điểm của DC . Từ D kẻ đường thẳng vuông góc với BP tại I và cắt CK tại N . Tìm tỉ số diện tích của tứ giác CPIN và diện tích tam giác DCN
h, tam giác ABC có điềm kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?
Cho tam giác ABC vuông tại A, đường cao AH. a, Chứng minh tam giác AHB đồng dạng với tam giác CAB b, Cho AB=12 cm, AC=16 cm. Tính độ dài AH? c, Kẻ DH vuông góc với AC tại D. Gọi M là trung điểm của AB; CM cắt HD tại I. Chứng minh I là trung điểm của HD
Tâm giác ABC vuông tại A, đường cao AH, đường phân giác góc ABC cắt AC tại D và cắt AH tại E
a.CM. tam giác ABC ~ tam giác HBA và AB^2 =BC.BH
b. AB=9, BC=15. Tính DC và AD
c. Gọi I là trung điểm ED. Chứng minh : góc BIH = góc ACB