Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jenny Nguyễn

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E theo thứ tự là chân các đường vuông góc kẻ từ H đến

a) cm:AH=DE

b) Gọi I là trung điểm của HB, K là trung điểm của HC. cm DI//EK

 

Nguyễn Trần Tuyết Liên
23 tháng 9 2016 lúc 13:07

Viết thiếu đề: ... các đường vuông góc kẻ từ H đến AB, AC.

a) Cm. AH = DE 

Ta có: HD vuông góc với BA (gt)
          ED vuông góc với BA ( BA vuông góc với AC; E thuộc AC)
=> HD // EA

Ta lại có: DA vuông góc với AC ( BA vuông góc với AC; D thuộc AB)
              HE vuông góc với AC (gt)
=> DA // HE

Xét tứ giác DHEA, có;
* HD // EA (cmt)
* DA // HE (cmt)
=> DHEA là hình bình hành (định nghĩa)
=> DE = AH (tính chất của đường chéo) (đpcm)

b) Gọi O là giao điểm của 2 đường chéo DE, AH của hình bình hành DHEA.

Xét tam giác HEC vuông tại E, có:
* K là trung điểm của HC (gt)
=> EK = KH = KC (trung tuyến của tam giác vuông bằng 1/2 cạnh huyền)
=> DI = IH = IB ( chứng minh tương tự)

Xét tam giác DIO và tam giác HIO, có:
* DI = IH (cmt)
* IO là cạnh chung
* OD = OH (DHEA là hình bình hành)
=> tam giác DIO = tam giác HIO (c.c.c)
=> góc IHO = góc IDO ( yếu tố tương ứng)
Mà góc IHO = 90 độ (AH là đường cao)
=> góc IDO = 90 độ 
=> ID vuông góc với DE (1)

Xét tam giác HOK và tam giác EOK, có:
* HO = EO (DHEA là hình bình hành)
* OK là cạnh chung
* KH = KE (cmt)
=> tam giác HOK = tam giác EOK (c.c.c)
=> góc OHK = góc OEK ( yếu tố tương ứng)
Mà góc OHK = 90 độ (AH là đường cao)
=> góc OEK = 90 độ 
=> KE vuông góc với DE (2)

Từ (1), (2) => ID // KE (từ vuông góc đến song song) (đpcm).


Các câu hỏi tương tự
Nguyễn Hiền Lương
Xem chi tiết
Nguyễn Hiền Lương
Xem chi tiết
Thiện Nhân Nguyễn
Xem chi tiết
khang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Minh tú Trần
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Hatake Kakashi
Xem chi tiết
giang đào phương
Xem chi tiết