Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC. Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK

Cao Minh Tâm
26 tháng 12 2017 lúc 16:34

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH

⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)

⇒ ∆ IDB cân tại I ⇒ ∠ (DIB) = 180 0  - 2. ∠ B (1)

Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.

⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .

⇒  ∆ KHE cân tại K ⇒  ∠ (EKH) =  180 0 - 2. ∠ (KHE) (2)

Tứ giác ADHE là hình chữ nhật nên:

HE // AD hay HE // AB ⇒  ∠ B =  ∠ (KHE) (đồng vị)

Từ (1), (2) và (3) suy ra:  ∠ (DIB) =  ∠ (EKH)

Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).


Các câu hỏi tương tự
Thiện Nhân Nguyễn
Xem chi tiết
giang đào phương
Xem chi tiết
Minh tú Trần
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Vũ Văn Hoàn
Xem chi tiết
Crazy 2002
Xem chi tiết
Hatake Kakashi
Xem chi tiết
Sương Nguyễn
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết