Cho tam giác ABC vuoong tại A, đường cao AH chia cạnh huyền BC thành 2 đoạn thẳng HB = 1cm, HC = 4 cm. Dựng đường tròn ( A ; 2 cm). Dựng đường kính DH của (O) Tiến tuyến của đường tròn (A) tại D cắt tia đối của tia AB ở E . Nối DC cắt HE tại I. Tính DI
GIÚP TUI VỚI ĐANG CẦN RẤT GẤP ^_^
Tam giác ABC vuông tai A, dường cao AH chia cạnh huyền BC thành hài đoạn thẳng HB=1cm; Hc=4cm. Dựng đường tròn (A;2cm)
a. Cm: BC là tiếp tuyến đường tròn (câu này mình làm được)
b. Dựng đường kính DH của (A). Tiếp tuyến của (A) tại D cắt tia đối của tia AB ở E. Cm: BDEH là hình bình hành (câu này mình làm được)
c. Nối DC cắt HE tại I. Tính DI (mình cần các bạn giúp)
Cho tam giác ABC vuông tại A đường cao AH. Chia cạnh huyền BC thành 2 đoạn thẳng HB=1cm và HC=4cm. Dựng đường tròn (A;2cm) A. Tính Ah,AB,AC và các góc B, góc C của tam giác ABC B. Chứng minh BC là tiếp tuyến đường tròn (A;2cm) C. Dựng đường kính DH của đường tròn (A;2cm). Tiếp tuyến của đường tròn (A;2cm) tại D cắt tia đối của tia AB ở E. Chứng minh tứ giác BDRH là hình bình hành.
Cho nửa đường tròn (O;R) đường kính BC và một điểm A trên nửa đường tròn (A khác B,C). Hạ AH vuông góc BC tại H. Trên nửa mp bờ BC chứa A dựng 2 nửa đường tròn đường kính HB, HC chúng lần lượt cắt AB, AC tại E và F.
1) C/m AE.AB=AF.AC
2) C/m EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC.
3) gọi I,K lần lượt là điểm đối xứng của H qua AB, AC. Cm 3 điểm A,I,K thẳng hàng
4) đường thẳng IK cắt tiếp tuyến kẻ từ B của nửa đường tròn (O) tại M. Cm 3 đường thẳng MC, AH,EF đồng quy
Cho tam giác ABC vuông tại AAB AC. Đường tròn tâm I đường kính AC cắt BC tại H. Trên đoạn HC lấy D sao cho HD HB. Tia AD cắt đường tròn I tại E. a) Chứng minh: AH là đường cao của ABC. b) Chứng minh: ..DADE DCDHc) Gọi K là trung điểm AB. Tính số đo góc IHK. d) Xác định tâm đường tròn ngoại tiếp AKH.
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
cho nửa đường tròn (o) đướng kính AB=2R và dây cung AC=R. gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D.
a, CMR Δ∆ABC vuông.
b, CMR DC là tiếp tuyến của đường tròn (O).
c, tia OD cắt (O) tại M. CM tứ giác OBMC là hình thoi.
d, vẽ CH vuông góc vs AB tại H và gọi I là trung điểm của cạnh CH. tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E.CMR E,C,D thẳng hàng
1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!
Cho tam giác ABC vuông tại A.Vẽ đtròn tâm o đường kính AB cắt BC tại điểm H .KẺ OK vuông góc với AH tại K và tia OK cắt AC tại D
a) Cm Dh là t tuyến của đtròn o
b) từ tđ I của Ak kẻ Đthằng vuông góc với AB và cắt đường tròn tại điểm M .Cm AK=AM