cho tam giác ABC vuông tại A , đương cao AH biết AB =15 , AC =20
a, tính BC và BH
b, Cho alpha là một góc nhọn biết : sin alpha + cos alpha = 1,4
Tính : sin mũ 4 alpha -cos mũ 4 alpha
1.Đơn giản bt : \(B=\sin\alpha-\sin\alpha\cdot\cos^2\alpha\)
2. Cho \(\tan\alpha=3\). Chứng minh \(\frac{\sin^3\alpha-\cos^3\alpha}{\sin^3\alpha+\cos^3\alpha}=\frac{13}{14}\)
3. Cho tam giác ABC vuông tại A (AB < AC), AH vuông góc với BC
a) Cm \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
b) Từ B vẻ đường thẳng vuông góc với trung tuyến AM cắt AH tại D cắt AM tại E, cắt AC tại F. Cm D là trung điểm của BF và BE.BF=BH.BC
c) Cho AB =120cm, AC=160cm. Tính DE, AF
GIÚP DÙM MÌNH NHA MÌNH ĐANG CẦN GẤP ^^
1/Chứng minh:
a) \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha=\sin^2\alpha\)
b)\(\cos^2\alpha+\tan^2\alpha\cdot\cos^2\alpha=1\)
2/Cho tam giác ABC có BH là đường cao, biết AB = 40cm;AC=58cm;BC=42cm
a) Chứng minh tam giác ABC vuông
b) Tính tỉ số lượng giác của \(\widehat{A}\)
C)Vẽ \(HE\perp AB;HF\perp BC\). Tính BH ; BE; BF và \(S_{EFCA}\)
B1: cho tam giác ABC vuông tại A (AB<AC), đường cao AH, M là trung điểm của BC. biết BH=7,2 cm, HC= 12,8cm/ Đường vuông góc với BC tại M cắt AC ở D.
a, CMR \(AC.CD=\frac{BC^2}{2}\)
b, Tính diện tích ABC và diện tích DMC
c, Gọi K là hình chiếu của M trên AC. tính diện tích KDM
B2: cho tam giác ABC cân tại A, đường cao thuộc cạnh bên bằng h, góc ở đáy bằng\(\alpha\)
CMR: \(SABC=\frac{h^2}{4\sin\alpha.\cos\alpha}\)
sin alpha +cos alpha = căn 2 .cho tam giác abc a=90 ah vuông góc bc chứng minh rằng (ab+bc+ac).(ac+ab-bc) >=4(ah^2)
giải giúp mik ạ
1)Cho tam giác nhọn ABC có: BC=a, AB=c, AC=b.
\(CMR:a;\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
\(CMR:b;S_{ABC}=\frac{1}{2}b.c.\sin A\)
2)a)Cho \(\cos\alpha=\frac{1}{3}\). Tính GT của biểu thức:
\(P=3\sin^2\alpha+\cos^2\alpha\)
b)Cho \(\cot\alpha=\frac{1}{3}\).Tính GT của biểu thức:
\(Q=\frac{\cos\alpha-\sin\alpha}{\cos\alpha+\sin\alpha}\)
Các bạn giúp mình những bài này nha. tks nhìu lắm
1.Cho góc nhọn \(\alpha\) Chứng minh
a.\(sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha=1\)
b.\(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
2. Cho tam giác ABC, cạnh AB=c, BC=a, CA=b và b+c=2a. Chứng minh
a.2sinA=sinB+sinC
b.\(\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)
3. Cho hình thang ABCD(AB//CD). Biết AB=2cm, AD=5cm, góc CAB=50 và góc CAD=70. Tính chu vi hình thang ABCD
cho tam giác ABC vuông tại A , góc C =\(\alpha\) <45 độ cho biết đường cao AH =h đường trung tuyếnAM =m và BC =a , AB =c , CA =b
cmr a, sin2 \(\alpha\) =\(\frac{1-cos^2\alpha}{2}\)b, cos2 \(\alpha\) = \(\frac{1+cos^2\alpha}{2}\)
Cho góc nhọn \(\alpha\). Tính giá trị biểu thức:
a) \(A=\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b) \(B=\sin^4\alpha\left(1+2\cos^2\alpha\right)+\cos^4\alpha\left(1+2\sin^2\alpha\right)\)
c) \(C=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
d)\( D=\left(3\sin\alpha+4\cos\alpha\right)^2+\left(4\sin\alpha-3\cos\alpha\right)^2\)