cho tam giác ABC vuông tại A (AB<AC),M là trung điểm của cạch BC . Vẽ MD vuông góc với AB(D thuộc AB) và ME vuông góc với AC(E thuộc AC)
a) cm tứ giác ADME là hình chữ nhật
b) đường thẳng qua song song với DE cắt ME tại F.Cm AF=DE
c)cm tứ giác AMCF là hình thoi
d) Từ M kẻ MK vuông góc với AF(k thuộc AF). cm ADEK là hình thang cân.
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC đường trung tuyến AO. Gọi D là điểm đối xứng với A qua O.
1) CM tứ giác ACBD là hình bình hành.
2) Kẻ AE vuông góc với BC tại E, Kẻ DF vuông góc với BC tại F
a) CM AF song song DE
b) Gọi H là giao của AE và BD, K là giao điểm của DF và AC. CM 3 điểm H,O,K thẳng hàng
Cho tam giác ABC vuông tại A (AB<AC), AH đường cao, AM đường trung tuyến. Vẽ HD vuông góc AB tại D, HE vuông góc AC tại E. Gọi I là giao điểm của AH và DE.
a) Cm: ADHE là hcn
b) Cm: AM vuông góc DE
c) Vẽ Mx vuông góc BC, It vuông góc DE, It cắt Mx tại N. Cm: NC=ND=NE=NB
d) Cm: AINM là hbh
e) Trên tia đối của tia AC lấy điểm F sao cho AF=AE. Cm: AFDH là hbh
f) Gọi K là điểm đối xứng của B qua A. Cm: CI vuông góc HK
g) Cm: AB.AC = AH.BC
h) Cm: DFKE là hình thoi
k) Cm: AKEH là hbh
i) Cm: HA đi qua trung điểm G của KF
Cho Tam giác ABC vuông tại A ( AB < AC ) có đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác CBA
b) Chứng minh AH2 = BH . HC
c) Trên đường thẳng vuông góc AC tại C , lấy điểm D sao cho CD = AB ( D và B nằm khác phía sao với đường thẳng AC ) . Đoạn thẳng HD cắt đoạn thẳng AC tại S . Kẻ AF vuông góc HS tại F .CM BH . CH = HF.HD
d) CM SFC = SHC
Cho tam giác ABC vuông tại A có AH là đường cao. Từ H vẽ HD vuông vuông góc cạnh AB tại D, vẽ HE vuông góc với cạnh AC tại E, biết AB = 15cm và BC = 25cm.
a) Tính độ dài cạnh Ac và dện tích tam giác ABC
b) Chứng minh tứ giác ADEH là hình chữ nhật.
c) Trên tia đối của tia AC lấy điểm F sao cho AF = AE. Chứng minh AFDH là hình bình hành.
d) Gọi K là điểm đối xứng của B qua A, gọi M là trung điểm của AH. Chứng minh CM thẳng góc HK
Cho hình vuông ABCD. Lấy E và D thứ tự trên cạnh AD và AB sao cho AE = AF. Đường thẳng đi qua A vuông góc với BE tại H cắt CD tại K.
a, Chứng minh tam giác AEB = tam giác DKA.
b, Chứng minh AF = DK.
c, Chứng minh BCKF là hình chữ nhật.
d, Chứng minh tam giác CHF vuông tại H.
Giải giúp mình câu d, với ạ, cảm ơn nhiều <333
1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
Cho tam giác ABC vuông tại A.Ke p.giác AD, gọi M, N lần lượt là hình chiếu của D trên AB, AC . BN giao với CM tại K. AK cắt DM tại I( I nằm giữa M và D). Gọi E là giao điểm của DM và BN. CM giao DN tại F. a, CM EF // BC. b, tính góc BID