a) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{AHB}=\widehat{BAC}=90^o\)
chung \(\widehat{ABC}\)
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HBA\)
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{AHB}=\widehat{BAC}=90^o\)
chung \(\widehat{ABC}\)
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HBA\)
cho tam giac abc vuong tai a. ve duong cao ah. goi m,n lan luot la trung diem cua bh va ah. chung minh
a, tam giac ahc dong dang voi tam giac bha
b, ac.am=ab.cn
c, cn vuong goc voi am
Cho tam giac ABC vuong tai A ,duong cao AH
1). C/m tam giac AHC dong dang tam giac BHA
2)cho AB=15,AC=20cm .tinh BC,AH
3) goi M la trung diem cua BH, N la trung diem cua AH .c/m CN vuong goc AM
Giai nhanh gium minh voi
cho tam giac abc vuong tai a duong phan giac bd biet ab = 6 ac =8 tinh ad dc goi k la giao diem cua duong cao ah ba bd chung minh tam giac ahb dong dang voi tam giac cab chung minh abk dong dang voi tam giac bad tu do suy ra ab*bk = bd*hb giup mik voi
cho tam giac ABC vuong tai A. duong cao tai AH,duong phan giac BD biet AB 3cm,AC 4cm.
a) tinh do dai doan AD va DC
b) goi k la giao diem cua AH va BD (CM : AB.BK=BD.HB)
c) CM tam AKD Can.
cho tam giac abc vuong tai A (AB<AC). Ke duong cao AH.
A) TAM GIAC AHB dong dang voi tam giac CAB
B) Tu H ke HE vuong goc voi AB(E THUOC AB). Ke HF vuong goc voi AC ( F thuoc AC) CM AE.AB=AF.AC
C) GOI M LA GIAO DIEM CUA EF VA BC. CM GOC MCE = GOC MFB
cho tam giac ABC vuong tai A, ve ra phia ngoai tam giac do cac tam giac ABD vuong can o B, ACF vuong can o C goi H la giao diem cua AB va CD, K la giao diem của AC va BF.
a) CM AH = AK
b)CM AH2 = BH*CK
Cho tam giac ABC vuong tai A lay diem D bat ky thuoc canh BC tu D ke duong vuong goc vs AB tai E vuong goc vs tai F
a? cm tam giac BED dong dang tam giac BAC
B? cm DB/DC = FA/FC
C/ tren tia doi ED lay diem K sao cho EK=ED. goi H la giao diem cua KC va EF . Cm tam giac HKE dong dang tam giac HFC
d/ CM DH // BK
cho tam giac ABC vuong A, duong cao AH,goi E la diem bat ki tren AB, duong thang qua H vuong goc EH cat AC tai F
a) cm tam giac BAC dong dang tam giac BHA suy ra BA2=BH.BC
b) cm tam giac BEH dong dang tam giac AFH
c) cm ti so SEHF/SBAC = (EH/AB)2
d) tim vi tri cua E tren AB de SEFH min
e) khi diem E di chuyen tren canh AB thi trung diem I cua EF se nam tran duong nao.
Cho tam giac ABC vuong o A, duong cao AH. Ke HD vuong goc AB va HE vuong goc AC(D thuoc AD, E thuoc AC).?
Goi O la giao diem cua AH va DE
1) cm: AH=DE
2) goi P va Q lan luot la trung diem cua BH va CH. Cm tu giac DEQP la hinh thang vuong
3) CM O la truc tam rtam giac APQ . Cm Sabc=2Sdeqp