a) xét tam giac ABM và tam giac CDM có :
BM=CM (gt)
AM=DM (gt)
góc BMA= góc DMC (đối đỉnh)
=>tam giác ABM= tam giác CDM (c.g.c)
Mà góc BAM = góc CDM (vì nằm ở vị trí so le trong)
=>AB//DC
a) xét tam giac ABM và tam giac CDM có :
BM=CM (gt)
AM=DM (gt)
góc BMA= góc DMC (đối đỉnh)
=>tam giác ABM= tam giác CDM (c.g.c)
Mà góc BAM = góc CDM (vì nằm ở vị trí so le trong)
=>AB//DC
Cho tam giác ABC vuông tại A, góc C= 30*, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho MD=MA.
a, cm: AD // CD
b, Gọi K là trung điểm AC, BK giao AM tại G, DK giao CM tại N. Cm tam giác ABK= tam giác CDK
c, Cm tam giác KGN cân
Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.
Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.
Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC
cho tam giác ABC vuông tại A ,trung tuyến AM .Trên tia đối của tia MA lấy điểm K sao cho AM=MK a)chứng minh tam giác MAB=tam giác MKC b)chứng minh AB song song với KC từ đó ta chứng minh góc ACK=90 độ c)gọi I là trung điểm AC chứng minh BI=KI d)gọi E là giao điểm của IM với BK.chứng miinh IE vuông góc với BK
cho tam giác abc vuông tại a, góc c bằng 30 độ, trung tuyến am. trên tia đối của tia ma lấy điểm d sao cho md=ma
a. chứng minh cd//ab
b.gọi k là trung điểm của ac, bk cắt am tại g, dk cắt cm tại n. chứng minh rằng tam giác abk=tam giác cdk
c.chứng minh tam giác kgn cân
NHÌN ĐỀ BÀI MK VIẾT HƠI RỐI NHƯNG MONG CÁC BẠN VẪN DÀNH THỜI GIAN ĐỌC VÀ LÀM HỘ MK NHA
BẠN NÀO LÀM ĐƯỢC CẢ 3 PHẦN MK TICK CHO
THẠKS CÁC BN NHÌU
Cho tam giác ABC vuông tại A , đường trung tuyến Am. Biết AB=9cm; BC=15cm
a)Tính AC
b) Trên tia đối của tia MA lấy điểm D sao cho MD=MA . Chứng minh tam giác MAB=MDC
c) Gọi K là trung điểm AC , BK cắt AD tại N . Chứng minh tam giác BDK cân
d) Chứng minh góc MAB> MAC
e) Gọi E là trung điểm AB . Chứng minh ba điểm E ; N ; C thẳng hàng .
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC vuông tại A (AB<AC) trên tia đối của tia AB lấy điểm D sao cho AD =AB. chứng minh tam giác ABC = tam giác ADC. Gọi M là trung điểm BC đường thẳng qua B và song song với CD cắt DM tại K chứng minh BK = CD. Qua A kẻ đường thẳng song song với BC cắt CD tại M chứng minh tam giác AMC cân
Bài 4: Cho tam giác ABC vuông tại A, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Chứng minh : tam giác MAB = tam giác MDC. Suy ra góc ACD vuông
b) Gọi K là trung điểm của AC. Chứng minh: KB=KD
c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân
Bài 3 Cho tam giác ABC có AB < AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a. Chứng minh tam giác AMB = tam giác DMC từ đó suy ra AB //CD.
b. Từ A kẻ AH vuông góc BC tại H. Gọi N là trung điểm của AC. Từ N kẻ đường thẳng song song với BC cắt AB tại E. Chứng minh rằng EN vuông góc AH.
c. Trên tia đối của tia NE lấy K sao cho NK = NE. Chứng minh ba điểm D, C, K thẳng hàng.