1, Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông)
=> 60o + ACB = 90o => ACB = 30o
Vì Cx ⊥ BC (gt) => xCA + ACB = 90o => xCA + 30o = 90o => xCA = 60o
Xét △CAE có: CE = CA (gt) => △CAE cân tại C mà xCA = 60o (cmt) => △CAE đều
2, Vì △CAE đều (cmt) => CAE = 60o
Ta có: CBA + ABF = 180o (2 góc kề bù)
=> 60o + ABF = 180o => ABF = 120o
Xét △BAF có: AB = BF (gt) => △BAF cân tại B => BAF = (180o - ABF) : 2 = (180o - 120o) : 2 = 60o : 2 = 30o
Ta có: CAE + CAB + BAF = 60o + 90o + 30o = 180o => EAF = 180o
=> 3 điểm E, A, F thẳng hàng