Cho tam giác ABC vuông tại A có BC=2AB=2a. Gọi D là trung điểm của BC. Vẽ tam giác DEF vuông tại D có E thuộc AC, F thuộc AB.
a, Tính số đo các góc tam giác DEF
b, Tính diện tích tam giác DEF theo DE
c, Khi diện tích tam giác DEF nhỏ nhất, tính độ dài cung EF của đường tròn ngoại tiếp tam giác DEF
cho tam giác ABC vuông tại A có AB = a( a > 0 )cho trước và BC = 2AB. gọi tam giác DEF là nửa tam giác đều nội tiếp trong tam giác
ABC ( D trên BC ; E trên AC ; F trên AB và góc EDF vuông ).
tìm vị trí D,E,F để diện tích tam giác DEF nhỏ nhất, tính theo a giá trị nhỏ nhất đó
Cho tam giác ABC nội tiếp đường tròn (O) có BC cố định (BC < 2R). Đỉnh A thay đổi sao cho tam giác ABC nhọn. Đường tròn (B;BA) cắt AC và (O) lấn lượt ở D và E. DE cắt (O) tại K khác E .
a) chứng minh : BK vuông góc AC
b) Gọi F của DK và AE, Mlà giao điểm của AC với đường tròn ngoại tiếp tam giác DEF. Chứng minh điểm M thuộc đường thẳng cố định
c) Khi tam giác ABC đều cạnh a và điểm N thuộc BC sao cho BC=3BN. Lấy P,Q lần lượt thuộc AB,A C sao cho tam giác NQP có chu vi nhỏ nhất. Tính chu vi tam giác NQP theo a.
Cho tam giac ABC vuông CânTại A, lấy các điểm D,E,F trên AB,AC,BC sao cho DEF là tam giac vuông cân . tính diện tích tam giác def nhỏ nhất , biết AB=AC=a
3, Cho tam giác ABC vuông tại A có AC=5cm; cotB=2,4
a, tính AB; BC
b, Tìm tỉ số lượng giác của góc C
4, Cho tam giác DEF có ED=7cm; góc D =40*;F = 58*. Kẻ đường cao EI của tam giác đó. Tính
a, EI, EF
b, Diện tích tam giác EDF
1) cho tâm giác ABC có các đường cao AD,BE,CF đồng quy tại trực tâm của H. Gọi O là tâm đường tròn ngoại tiếp tam giác cm
a)DA là phân giác góc trong và BC là phân giác góc ngoài tại đỉnh D của tam giác DEF
b)H là tâm đường tròn ngoại tiếp tam giác DEF
c)OA vuông góc với EF
d) đường thẳng nối trung điểm của AH , BC là trung trực của EF
(ai giải nhanh mk tick cho nha!!!)
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R . Kẻ đường cao AD (D thuộc BC) và đường kính AK . Hạ BE và CF cùng vuông góc với AK ( E thuộc AK , F thuộc AK ).
1) chứng minh tứ giác ABDE nội tiếp.
2) Chứng minh DF song song với BK
3) cho góc ABC = 60 độ , R=4cm. Tính diện tích hình quạt giới hạn bởi OC , OK và cung nhỏ CK .
4) cho BC cố định , A chuyển động trên cung lớn Bc sao cho tam giác ABC có ba góc nhọn . Chứng minh tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
Cho tam giác ABC không cân ở A,gọi M là trung điểm cạnh BC, D là hình chiếu vuông góc của A trên BC, E và F lần lượt là các hình chiếu vuông góc của B và C trên đường kính AA' của đường tròn ngoại tiếp tam giác ABC
CMR: M là tâm đường tròn ngoại tiếp tam giác DEF
Cho tam giác ABC có B A C ⏜ = 60 0 , A C = b , A B = c b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.
c) Tính độ dài cạnh BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b, c.