Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Hương

Cho tam giác ABC vuông tại A có AM là đường trung tuyến, AH là đường cao. Trên tia đối của tia AM lấy P (P khác A). Các đường thẳng qua H vuông góc với AB và AC lần lượt cắt đường thẳng PB và PC tại Q và R tương ứng. CM: A là trực tâm tam giác PQR

Tran Le Khanh Linh
10 tháng 4 2020 lúc 13:11

Gọi E là giao của AC và PB, F là giao của AB và PC

Qua P kẻ đường thẳng d song song với BC

Giả sử E và F lần luợt là giao của AC và AB với d

Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'

Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)

Gọi I là giao của HQ và AB; K là giao của HR và AC

Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)

\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK

Từ (1) => PM _|_ QR hay PA _|_ QR

Gọi S là giao RA và PB

\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)

có tam giác BHQ đồng dạng với tam giác AHE 

=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp

Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)

Từ (1) (2) => A là trực tâm tam giác PQR

Khách vãng lai đã xóa

Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
Ánh Nhật
Xem chi tiết
Nguyễn Thị Kiểm
Xem chi tiết
lê trần hồng thắm
Xem chi tiết
lê duy mạnh
Xem chi tiết
Nguyen Dang
Xem chi tiết
Anh Nguyễn
Xem chi tiết
Ngô Quang Sáng
Xem chi tiết