Cho Tam giác ABC vuông tại A AB AC , đường cao AH. Vẽ HD vuông góc AB, HE vuông góc AC D thuộc AB, thuộc AC a Chứng minh ADHE là hình chữ nhật.b Gọi P là điểm đối xứng của A qua E. Chứng minh DHPE là hình bình hành.c Gọi M là trung điểm của HC, I là giao điểm cuả AH và DE. Chứng minh BI vuông góc AM .
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho tam giác ABC vuông tại A có AH là đường cao. Từ H vẽ HD vuông vuông góc cạnh AB tại D, vẽ HE vuông góc với cạnh AC tại E, biết AB = 15cm và BC = 25cm.
a) Tính độ dài cạnh Ac và dện tích tam giác ABC
b) Chứng minh tứ giác ADEH là hình chữ nhật.
c) Trên tia đối của tia AC lấy điểm F sao cho AF = AE. Chứng minh AFDH là hình bình hành.
d) Gọi K là điểm đối xứng của B qua A, gọi M là trung điểm của AH. Chứng minh CM thẳng góc HK
cho tam giác ABC vuông tại A. Đường cao AH. Từ H vẽ HD vuông góc với AB tại D, vẽ HE vuông góc với AC tại E. Trên tia đối tia AC lấy điểm F sao cho AF = AE. K là điểm đối xứng của B qua A. Gọi M là trung điểm của AH. Chứng minh CM vuông góc với HK
Cho vuông tại A ( AB < AC ) có đường cao AH. Vẽ HD vuông góc AB tại D, vẽ HE vuông góc AC tại E.
a)Chứng minh: Tứ giác ADHE là hình chữ nhật
b)Gọi N là điểm đối xứng của H qua E. Chứng minh: Tứ giác ADEN là hình bình hành.
c)Vẽ đường trung tuyến AI của . Chứng minh AI vuông góc DE
cho tam giác abc vuông tại a(ab<ac) có đường cao ah(H thuộc bc). kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E
A)chúng minh tứ giác ADHE là hình chữ nhật
b) gọi F là điểm đối xứng H qua D. Chứng minh tứ giác AEDF là hình bình hành
c) gọi M là là trung điểm của bc chứng minh am vuông góc với A
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Từ H kẻ HM vuông góc với AB tại H, HN vuông góc với AC tại N. Gọi I là trung điểm HC, vẽ K đối xứng với A qua I. a,chứng minh AK = MC. b, gọi O là giao điểm của AH và MN , D là giao điểm của AK và CO . từ I kẻ IE // CK(E thuộc AC). chứng minh 3 điểm H,D,E thẳng hàng
cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D là điểm đối xứng của H qua AB và E là điểm đối xứng của H qua AC. DH cắt AB tại I. HE cắt AC tại N
1/ chứng minh: tứ giác AIHN là hcn. Từ đó suy ra AH=IN
2/ chứng minh: ADIN là hình bình hành
3/chứng minh: AINE là hình bình hành
4/ trên đoạn HC lấy điểm F sao cho HF=HB. Kẻ FK vuông góc AC tại K. Chứng minh: N là trung điểm của AK va HA=HK
5/ gọi L là trung điểm của CF. chứng minh: KH vuông góc với KL
cho tam giác vuông abc vuông tại a(ab<ac), đường cao ah. kẻ hd vuông góc với ab tại d, he vuông góc với ac tại e. chứng minh ah=de. gọi i là điểm đối xứng với a qua e. chứng minh dhie là hình bình hành. cho ab = 15cm ,ac= 20cm,tính bc và ah. gọi f là trung điểm của bh, g là trung điểm của hc. chứng minh df song song với ge