Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hot girl 2k5

Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC

a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC

b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE

c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG

d) Chứng minh rằng: AB =  2CG


 

Thanh Tùng DZ
10 tháng 1 2018 lúc 17:58

A B C M D E F G H

a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :

AM ( cạnh chung )

AB = AC ( gt )

MB = MC ( gt )

Suy ra : \(\Delta AMB\)\(\Delta AMC\)( c.c.c )

\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}\)( hai cạnh tương ứng ) mà \(\widehat{AMB}+\widehat{AMC}=180^o\)

\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\frac{\widehat{BMC}}{2}=90^o\)\(\Rightarrow\)AM \(\perp\)BC

b) Xét \(\Delta ADF\)và \(\Delta CDE\)có :

DE = DF ( gt )

\(\widehat{EDC}=\widehat{FDA}\)( hai góc đối đỉnh )

DA = DC ( gt )

Suy ra : \(\Delta ADF\)\(\Delta CDE\)( c.g.c )

\(\Rightarrow\widehat{FAD}=\widehat{ECD}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên AF // EC

c) gọi H là giao điểm của BD và AE

Xét \(\Delta AHD\)vuông tại H có : \(\widehat{HAD}+\widehat{ADH}=90^o\)( 1 )

Xét \(\Delta BAD\) vuông tại A có : \(\widehat{ABD}+\widehat{BDA}=90^o\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{HAD}=\widehat{ABD}\)

Xét \(\Delta BAD\)và \(\Delta ACG\)có :

\(\widehat{DBA}=\widehat{GAC}\)( cmt )

AB = AC ( gt )

\(\widehat{BAD}=\widehat{ACG}\)( = \(90^o\))   

Suy ra : \(\Delta BAD\)\(\Delta ACG\)( g.c.g )

\(\Rightarrow AD=CG\)( hai cạnh tương ứng )

Mà \(AD=DC=\frac{AC}{2}\)

\(\Rightarrow CG=\frac{AC}{2}=\frac{AB}{2}\)( vì AB = AC )

\(\Rightarrow AB=2CG\)


Các câu hỏi tương tự
Trần Hoàng Hai kudo
Xem chi tiết
co be de thuong
Xem chi tiết
Hạnh Hồng
Xem chi tiết
Nguyễn Trường Hải
Xem chi tiết
Ta thị hải yến
Xem chi tiết
Đỗ Gia Phúc
Xem chi tiết
Đỗ Thụy Cát Tường
Xem chi tiết
Hoàng Như Yến
Xem chi tiết
Hanna Giver
Xem chi tiết