a) Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{BAC}=\widehat{AHB}=90^0\)
\(\widehat{B}\) chung
suy ra: \(\Delta ABC~\Delta HBA\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)
\(\Rightarrow\)\(AB^2=HB.BC\)
\(\Leftrightarrow\)\(6^2=HB.10\)
\(\Rightarrow\)\(HB=3,6\)
Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) chung
suy ra: \(\Delta AHB~\Delta CAB\)
\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\) (1)
\(\Delta ABC\) có \(BK\) là phân giác \(\widehat{ABC}\)
\(\Rightarrow\)\(\frac{AK}{AB}=\frac{KC}{BC}\)
\(\Rightarrow\) \(\frac{AK}{KC}=\frac{AB}{BC}\) (2)
Từ (1) và (2) suy ra: \(\frac{AH}{AC}=\frac{AK}{KC}\)
\(\Rightarrow\)\(AK.AC=AH.KC\) (đpcm)