cho tam giác abc vuông tại a đường cao ah gọi i, k lần lượt là trung điểm của hai cạnh ah và bh.
a) cmr: tam giác ahk đồng dạng với tam giác chi
b) CMR: ak vuông góc với ci
Cho tam giác vuông ABC vuông tại A, chân đường cao AH của tam giác ABC chia cạnh huyền BC thành hai đoạn thẳng BH = 4cm, HC = 9cm. Tính diện tích tam giác ABC?
A. S A B C = 39 c m 2
B. S A B C = 36 c m 2
C. S A B C = 78 c m 2
D. S A B C = 19 c m 2
cho tam giác ABC vuông tại a đường cao AH a) chứng minh tam giác ABC ~ tam giác HBA từ đó suy ra AB^2=BH .BC b) cho BH=4cm CH=9cm tính AH,AB c) gọi F điểm tùy ý trên AC, đường thẳng qua H vuông góc HF cắt cạnh AB tại E chứng minh AE . CH=AH . FC d) xác định vị trí của F trên AC để đoạn FE có độ dài ngắn nhất
Cho tam giác abc vuông tại a. Đường cao ah
a/ cmr: ah^2 = hb. Hc
B. Biết bh=9cm, hc=16cm
Tính các cạnh của tam giác abc
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Tính độ dài các cạnh BC, AH ,BH
Cho tam giác ABC vuông tại A, kẻ đường cao AH kẻ tia Bx vuông góc với BA và Bx cắt AH tại E 1. Cmr tam giác AHB ~ tam giác CAB và AB^2 = BH . BC
cho tam giác ABC vuông tại A có AB=8cm, AC=6cm. Đường cao AH
a. Tính BC
b. CMR tam giác ABC đồng dạng tam giác AHB
c. CMR: AB^2=BH.HC. Tính BH, HC
d. Vẽ phân giác AD của góc A(D thuộc BC) TÍnh DB
Cho Tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Chứng minh Tam giác HBA ~ tam giác ABC b) Chứng minh: AB^ = BH.BCTính AB, AH, biết BH = 3cm BC = 12cm c) Gọi E là trung điểm của AB, kẻ HD vuông góc với AC tại D (D thuộc AC). Đường thẳng CE cắt AH và HD lần lượt tại I, K. Chúng minh KH = KD và 3 điểm B, I, D thẳng hàng.