cho tam giác ABC vuông tại A , AC > AB , tia phân giác của góc A cắt BC ở D . Đường thẳng vuông góc với BC tại D cắt AC ở E . Chứng minh rằng DB = DE
có lời giải nhé
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Kẽ DE vuông góc với BC (E thuộc BC)
a/ Chứng minh rằng: AB=BE
b/ Chững minh rằng: DB là phân giác của góc ADE
cho tam giác ABC vuông tại A, AC>AB, vẽ đường phân giác AD, đường thẳng vuông góc với BC tại D cắt AC ở E. CMR: DB=DE
cho tam giác ABC vuông tại A ( AB> AC), tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC, trên tia AC lấy E sao cho AE= AB, đường thẳng vuông góc với AE tại E cắt tia DH ở K, chứng minh : a) BA= BH ; b) góc DBK = 45độ
cho tam giác ABC vuông tại A ( AB> AC), tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC, trên tia AC lấy E sao cho AE= AB, đường thẳng vuông góc với AE tại E cắt tia DH ở K, chứng minh : a) BA= BH ; b) góc DBK = 45độ
Cho tam giác ABC vuông tại A, AC > AB, tia phân giác của góc A cắt BC tại D và cắt AC tại E. Chứng minh :DB=DE
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC ở D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh DA = DE.
b) Chứng minh BD là trung trực của AE.
c) Kẻ CK vuông góc với BD tại K, các đường thẳng CK, BA cắt .nhau tại F. Chứng minh ba điểm E, D, F thẳng hàng.
d) Chứng minh BC - BA > DC - DA.
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam giác ABC vuoong tại A (AB<AC) phân giác góc B cắt AC tại D. Kẻ DE vuông góc với BC
a) So sánh DE và DB
b) Tia ED cắt tia BA tại F. Chứng minh đường thẳng BD vuông góc với đường thẳng CF
c) Nếu góc ABC=60 độ. Chứng minh tam giác BCF là tam giác đều