Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH ( H \(\in\)BC ) . Trên tia HC lấy điểm D sao cho HD = HA . Đường vuông góc với BC tại D cắt AC tại E, cắt AB tại F . Gọi M là trung điểm của BE, AM cắt BC tại G
a) Chứng minh rằng 2 tam giác DEC và AEF đồng dạng
b) Cho biêt AB = 3cm, AC = 4cm. Tính diện tích tam giác ABD
c) chứng minh rằng \(\frac{GB}{GC}=\frac{HD}{HC}\)
Cô hướng dẫn nhé
a) \(\Delta DEC\sim\Delta AEF\left(g-g\right)\)
b) Từ định lý Pi-ta-go ta tìm được BC = 5 cm.
\(\Delta ABH\sim\Delta CBA\left(g-g\right)\Rightarrow\frac{AB}{BC}=\frac{AH}{AC}=\frac{BH}{BA}\Rightarrow\frac{3}{5}=\frac{AH}{4}=\frac{BH}{3}\)
Vậy thì AH = 2,4 cm, BH = 1,8 cm. Khi đó BD - BH + HD = BH + AH = 2,4 + 1,8 = 4,2 cm.
\(S_{ABD}=\frac{1}{2}.AH.BD=\frac{1}{2}.2,4.4,2=5.04\left(cm^2\right)\)
c) Ta cm được AG là phân giác, từ đó suy ra \(\frac{GB}{GC}=\frac{AB}{AC}\) (TC tia phân giác)
Mà \(\frac{AB}{AC}=\frac{AH}{HC}=\frac{HD}{HC}\) (TC tam giác đồng dạng)
Vậy \(\frac{GB}{GC}=\frac{HD}{HC}\)