Tam giác ABC vuông tại A qua C kẻ d vuông góc AC từ trung điểm M của AC kẻ ME vuông góc BC (E thuộc BC) , đg thẳng ME cắt (d) tại H , cắt AB tại K a CMR: tam giác AMK=∆CMH .Suy ra AKCH là hình bình hành b) gọi D là giao điểm của AH và BM .Chứng minh rằng BMCH nội tiếp.Xđ tâm o
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=9cm, BC=15cm
a.)Tính AC, AH, BH, góc B
b.)Phân giác của góc BAC cắt BC tại D, từ D kẻ DM và DN lần lượt vuông góc với AB và AC (M thuộc AB, N thuộc AC). Chứng minh tứ giác AMDN là hình vuông.
c.)Tính diện tích hình vuông AMDN.
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=9cm, AC=15cm
a.)Tính AC, AH, BH, góc B
b.)Phân giác của góc BAC cắt BC tại D, từ D kẻ DM và DN lần lượt vuông góc với AB và AC (M thuộc AB, N thuộc AC). Chứng minh tứ giác AMDN là hình vuông.
c.)Tính diện tích hình vuông AMDN.
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
cho tam giác ABC vuông cân tại A. Trên cạnh AC và AB lấy tương ứng 2 điểm D và E sao cho AE=AD, các đường thẳng vuông góc với ce kẻ từ A và D lần lượt cắt BC tại K và N. Chứng minh rằng : BK=KN
B1:Cho hình chữ nhật ABCD. AB>AD. E thuộc CD sao cho AE=AB. F thuộc AD sao cho EF vuông góc Ea. Chứng minh : AC vuông góc BF.
B2:Cho tam giác ABC vuông tại A, đường cao AH. AB>AC.D nằm trong tam giác sao cho CD=CA. M thuộc BA sao cho góc BAM bằng 2 lần góc ACD. MD cắt AH tại N.C/m: BD^2 = BM.BA và DM=DN.
B3:Cho tam giác ABC vuông tại A, đường cao AH.O là trung điểm của AC. Kẻ AK vuông góc BO. Qua C kẻ song song với AB, cắt AK tại L.
a) CM:LH=LC.
b)Đường trung trực của BK cắt CL tại D. Chứng minh : DK=DC.
Cho tam giác ABC vuông tại A, AB = 6 cm, AC= 8 cm. a) tính BC, góc B và góc C b) tia phân giác góc A cắt BC tại D. Tính BD, DC c) từ D kẻ DE vuông góc với AD, BF vuông góc với AC. tứ giác AEDF là hình gì, tính chu vi và diện tích của tứ giác AEDF