Cho tam giác ABC vuông tại A( AB <AC), đường cao AH, phân giác AD, vẽ BI vuông góc AD( I thuộc AD), tia BI cắt AC tại M. Chứng minh :
a) BH.BC=2BI2
B) Diện tích tam giác DHI= S tam giác DAB.cos2 ADB
Cho tam giác ABC vuông tại A và kẻ đường cao AH a)C/m tam giác ABC đồng dạng tam giác HBA, từ đó=>AB.AB=BH.BC b)C/m tam giác HAB đồng dạng tam giác HCA, từ đó =>AH.AH=BH.CH c)Trên tia đối AC lấy điểm D sao cho AD>AC, vẽ đường thẳng h song song với AC, cắt AB, DB lần lượt tại M,N. C/m MN/MH=AD/AC d)Vẽ AE vuông góc BD tại E. C/m góc BEH= góc BAH
1/ Cho tam giác ABC vuông tại A có đường phân giác AD và đường trung tuyến BM vuông góc tại E. Gọi H là trung điểm AE. BE cắt AC tại K.
a) Cm: tam giác BDK vuông cân tại D
b) Cm : (AD/AC)2 = 2/9
2/ Cho tam giác ABC vuông cân tại có đường trung tuyến AM. Vẽ MH vuông AB ( H thuộc AB ). Từ A hạ AI vuông CH tại I. Gọi N là giao điểm IC và AM. BI cắt AC tại K.
a) Cm: BI vuông với IM tại I
b) Cm: AN.AB = IC.MK
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC vuông tại A, ba đường phân giác AD, BE, CF cắt nhau tại I (D thuộc BC, E thuộc AC, F thuộc AB). Vẽ AL vuông góc với BI và AK vuông góc với CI.
1) Chứng minh 2LK2 = AI2
2) Chứng minh LK // BC
3) Kẻ đường cao AH, gọi M là trung điểm của BC, MI cắt AH tại J. Chứng minh J là trực tâm tam giác ALK và
ẠJ= LK
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB, HF vuông góc AC
a) Cm: AE.AB=AF.AC
b) Qua B kẻ đường thẳng vuông góc BC tại B cắt tia CA tại I. Cm: IA.AC=BH.BC
c) Biết BH=9cm, HC=16cm. Vẽ đường phân giác AD. Tính AD
d,CM \(\frac{AB^2}{AC^2}=\frac{BH}{HC}\)
e,CM: \(\frac{AB^3}{AC^3}=BE.CF.BC\)
Cho tam giác ABC vuông tại A, có AB=6cm; AC = 8cm; BC=10cm. Đường cao AH (H thuộc BC)
a) Chỉ ra các cặp tam giác đồng dạng
b) Cho AD là tia phân giác của tam giác ABC (D thuộc BC). Tính độ dài DB và DC
c) Chứng minh rằng AB^2 = BH*HC
d) Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E. Chứng minh tam giác ABD đồng dạng tam giác ECD.