Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.
a.Tính BC, AH?
b.Chứng minh tam giác EBF đồng dạng với tam giác EDC
c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD
d.Chứng minh BD vuông góc với CF
e.Tính tỉ số diện tích của 2 tam giác ABC và BCD
Cho Δ ABC vuông tại A, AB = 9cm, AC = 12cm, đường cao AH, phân giác BD. Vẽ DC ⊥ BC, đường thẳng DE cắt đường thẳng AB tại F
a) Tính BH, CH
Ap dung dl Pytago vao trong tam giac vuong ABC ta co:
BC^2 = AB^2 + AC^2
=> BC = 15
AH la duong cao trong tam giac vuong ABC
=> 1/AH^2 = 1/AB^2 + 1/AC^2
=> AH = 7,2
Ap dung dl PYtago vao trong tam giac vuong AHB ta duoc:
BH^2 = AB^2 - AH^2
=> BH = 5,4
BC = BH + HC
=> HC = 9,6
b) Chứng minh Δ EBF đồng dạng Δ EDC
Tam giac EDC dong dang tam giac ADF(g,g,g)
=> Goc AFD = goc ECD
Ma AFD = 90 - goc B
=> Goc EDC = Goc B
Xet tam giac vuong EBF va tam giac vuong EDC ta co:
+) Goc A1 = goc E = 90
+) Goc B = Goc EDC
+) Goc BFE = Goc C
=> Δ EBF đồng dạng Δ EDC