áp dụng định lí pytago cho tam giác abc vuông tại a
\(BC^2=\sqrt{AB^2+AC^2}=3\sqrt{34}\)
do AD là tia phân giác góc A nên
\(\dfrac{CD}{BD}=\dfrac{AC}{AB}=\dfrac{5}{3}\)
suy ra CD=\(\dfrac{15.\sqrt{34}}{8}\)
kẻ đường cao AH
suy ra \(AD^2=HD^2+AH^2\)
ta có AH.BC=AB.AC suy ra \(AH=\dfrac{45}{\sqrt{34}}\)
\(CH.BC=CA^2=225\) suy ra \(CH=\dfrac{75}{\sqrt{34}}\)
suy ra \(HD=CH-CD=...\)
thay vào tính được \(AD^2\) rồi tính dc AD