Cho tam giác ABC vuông tại A ( AB< AC) . Trên tia đối của tia AC lấy điểm D sao cho AD= AB. Trên tia đối của tia AB lấy điierm E sao cho AE= AC
a, Cm BC=DE
b, CM: tam giác ABD vuông cân và BD//CE
c, Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M, từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N. Chứng minh: NM//AB
d, CM: AE2+AD2=4AM2
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE