Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a. Chứng minh rằng AH2 = AD.AB = AE.AC
b. Chứng minh tam giác ABC và tam giác AED đồng dạng
c. Gọi M là trung điểm của BC, N là giao điểm của DE và BC, O là giao điểm của DE và AH. Chứng minh rằng AN vuông góc với MO
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC, đường cao AH ( H thuộc BC ) với AB < AC. Gọi hình chiếu của H lên các đoạn thẳng AB, AC lần lượt là M và N
a) Chứng minh tam giác AHM đồng dạng với tam giác ABH. Từ đó chứng minh AH2 = AM.AB
b) Chứng minh AH.AB = AN.AC.Từ đó chứng minh tam giác AMN đồng dạng với tam giác ACB
Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH
a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC
b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH
Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .
Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông.
Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng:
a) Tam giác AHB đồng dạng với tam giác CHA .
b) BAC = 90o
Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC
Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng
Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng :
a) BH.BD=BK.BC
b) CH.CE=CK.CB
c) BH.BD+CH.CE=BC2
Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng :
a) AB.AE=AC.HC
b) BC. AK=AC.HC
c) AB.AE+AD.AK=AC2
1 cho tam giác abc vuông tại a kẻ đường cao AH gọi E,F lần lượt là hình chiếu của h lên AB và AC
a chứng minh tam giác AHB đồng dạng vs CAB
b, chứng minh AE.AB=AF.AC
c đường thẳng đi qua A vuông góc vs EF cắt BC tại I .CHỨNG MINH I LÀ TRUNG ĐIỂM BC
d,chứng minh nếu diện tích tam giác ABC gấp đôi diện tích tứ giác AEHF thi tam giác ABC là tam giác vuông cân
cho tam giác ABC nhọn có đường cao AH, gọi E và D lần lượt là hình chiếu của H trên cạnh AB và AC
a) chứng minh tam giác AHE đồng dạng tam giác HBE
b)chứng minh AH2=ACxAD
c)gọi M là giao điểm của BD và CE.chứng minh tam giác BME đồng dạng tam giác CMD
Cho tam giác ABC có AH là đường cao(H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, tam giác ABH đồng dạng với tam giác AHD
b,HE\(^2\)=AE.EC
c,Gọi M là giao điểm của BE và CD. Chứng minh rằng tam giác DBM đồng dạng với tam giác ECM
Cho tam giác ABC vuông tại A , AB<AC, đường cao AH . Gọi E,F là hình chiếu của điểm H trên AB và AC.
a, chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2 = BC. BH
b, chứng minh AE.AB= AF. AC