a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
Bài 3.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấyđiểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh rằng:
a) BH = CK b) ∆ABH = ∆ACK
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
cho tam giác ABC cân tại A (A<90 độ) . Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E
a) chứng minh tam giác ABD = tam giác ACE
b) trên tia đối của tia BD lấy điểm K sao cho BD = DK . Chứng minh tam giác BCK là tam giác cân
c) chứng minh ED song song với BC từ đó suy ra góc EDB = góc DKC
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh :
a) \(BH=CK\)
b) \(\Delta ABH=\Delta ACK\)
cho tam giác abc cân tại a,trên tia đối của tia bc lấy điểm d,trên tia đối của tia cb lấy điểm e sao cho bd=ce.kẻ bh vuông góc với ad tại h,kẻ ck vuông góc với ae tại k.chứng minh tam giác bhd=tam giác cke
cho tam giác ABC biết AB<BC Trên tia BA lấy Điểm D sao cho BC =BD Tia phân giác của góc B cắt cạnh AC và CD theo thứ tự ở E và I
a)C/M tam giác BED = tam giác BEC và chứng minh IC=ID
b)Từ A vẽ đường vuông góc AH với DC (H thuộc DC). Chứng minh AD//BI
giúp mình đi ngày kia mình kiểm ta rồi
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho \(\widehat{BAD}=\widehat{CAE}\). Kẻ BH vuông góc với AD (\(H\in AD\)). Kẻ CK vuông góc với AE (\(K\in AE\))
Chứng minh :
a) BD = CE
b) BH = CK
) Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB = AD
a/ Chứng minh tam giác ABC=TAM GIÁC ADC
b/ Từ D kẻ tia Dx vuông góc với DC, Từ B kẻ tia By vuông góc với BC chúng cắt nhau tại H. chứng minh DH = BH
c/ Chứng minh DH//BC