Mình gửi hình trước nhé mai mình làm sau!
Mình gửi hình trước nhé mai mình làm sau!
Cho tam giác ABC vuông góc tại A , kẻ BD là tia phân giác của góc ABC , ( D thuộc AC ). Trên cạnh BC lấy điểm E sao cho BE=BA.
a )chứng minh DE = AD
b.) trên tia đối của tia AB lấy điểm F sao cho AF = CE chứng minh BD vuông góc EFc ) chứng minh AE //FC
Bài 2: Cho D ABC vuông tại B, BC < BA. Lấy điểm E sao cho B là trung điểm của CE.
a/ Chứng minh AB là tia phân giác góc CAE.
b/ Vẽ CM ^ AE tại M, CM cắt AB tại H, vẽ HN ^ CA tại N. Chứng minh D MAN cân và MN//CE.
c/ So sánh HM và HC.
d/ Tìm điều kiện D CMN cân tại N.
) Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB = AD
a/ Chứng minh tam giác ABC=TAM GIÁC ADC
b/ Từ D kẻ tia Dx vuông góc với DC, Từ B kẻ tia By vuông góc với BC chúng cắt nhau tại H. chứng minh DH = BH
c/ Chứng minh DH//BC
3:Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại K . Từ K vẽ KH BC ( HBC)
a) Cho AB = 6cm, BC = 10cm. Tính AC .
b) Chứng minh ABK = HBK.
c) Trên tia đối tia AB lấy điểm I sao cho AI= HC. Chứng minh I, H, K thẳng hàng.
d) Chứng minh AH // CI
cho tam giác ABC vuông cân tại A có D là trung điểm AC.Từ A kẻ đường vuông góc với BD ,cắt BC tại E .Trên tia đối DE lấy điểm F sao cho D là trung điểm EF.
a)Chứng minh :AF//BC
b)Kẻ đường thẳng vuông góc AC tại C ,cắt AE tại K.Chứng minh: △ABD=△CAK
c)Chứng minh:EC phân giác góc DEK
d)Chứng minh:AE=2DE
Bài 1: Cho ΔABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự H và K. Chứng minh rằng:
a) AH = AK
b) BH = CK
c) AK = \(\frac{AC+AB}{2}\), CK = \(\frac{AC-AB}{2}\)
Bài 2: Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh ΔAMN cân
b) BE ⊥ AM (E ∈ AM, CF ⊥ AN (F ∈ AN). Chứng minh rằng ΔBME = ΔCNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng
Bài 3: Cho ΔABC có M là trung điểm của BC và ti AM là tia phân giác của góc A. Vẽ MI ⊥ AB tại I, MK ⊥ AC tại K. Chứng minh rằng:
a) MI = MK
b) ΔABC cân
c) Cho biết AB = 37, AM = 35. Tính BC
d) Trên tia đối của tia BM lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh ΔADE cân
e) Vẽ BQ ⊥ AD tại Q, CR ⊥ AE tại R. chứng minh ΔABQ = ΔACR
Cho tam giác ABC ( AB < AC). Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE = AB. a) Chứng minh rằng : ∆ABD = ∆AED và góc ABD bằng góc AED. b) Hai tia AB và ED cắt nhau tại F. Chứng minh rằng: ∆DBF = ∆DEC
ChoΔ ABC ⊥ tại A. Tia phân giác của góc ABC cắt AC tại D. trên cạnh BC lấy điểm E sao cho BE = BA
a) Cm: ΔABD = ΔEBD và DE⊥ BC
b) Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Cm: ΔAFD = ΔECD
c) Gọi H là trung điểm của đoạn thẳng CF. Cm: DH ⊥ CF.