Cho tam giác ABC vuông cân tại A. M là trung điểm BC. Trên cạnh BC lấy điểm E, kẻ BH vuông góc với AE, CK vuông góc với AE.
Tìm điểm E trên MC để tam giác HME cân
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE = BD. Đường thẳng vuông góc với BC kẻ từ D cắt AB tại M. Đường vuông góc với BE tại E cắt AC tại N.
a. CMR: tam giác MBD = tam giác NCE.
b. Cạnh BC cắt MN tại I. CMR: MI = IN.
c. Chứng minh đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên đoạn BC.
Mk giải được câu a, b rùi. Các bn giúp mk câu c vs!!!
Cho tam giác ABC cân tại A.Kẻ AH vuông góc BC tại H .Trên tia đối của HA lấy điểm M sao cho AH=HM. a) Chứng minh tam giác ABH=tam giác MBH. b) Trên tia đối của tia CA lấy điểm N sao cho CA=CN.Chứng minh tam giác CMN cân. c) Chứng minh AM vuông góc với MN.
Bài 5: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Tính số đo các góc của tam giác ACD
Bài6:TamgiácABCcântạiBcóBˆ =100 đôn.LấycácđiểmDvàEtrêncạnhAC sao cho AD = BA, CE = CB. Tính số đo góc DBE?
Bài 7: Cho tam giác ABC cân tại A. Vẽ BH vuông góc với AC tại H. Chứng minh rằng góc BAC có số đo gấp đôi số đo góc CBH.
Bài 8: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh tam giác IBC và tam giác IDE là các tam giác cân.
b) Chứng minh BC // DE.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.
giúp mk nha
cho tam giác ABC vuông cân tại A. Lấy M là trung điểm của BC lấy D trên BC. Vẽ BH vuông góc vs AD, CK vuông góc vs AD. CMR tam giác MHK vuông cân.
Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:
a, Tam giác ABI = tam giác ACI
b, AI là trung trực của BC
Câu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CN
a, CM tam giác AMN cân
b, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CK
c, Gọi O là giao điểm của BH và CK. CM tam giác OBC cân
d, Gọi D là trung điểm của BC. CMR 3 điểm A,D,O thẳng hàng
Câu 3: Cho tam giác ABC cân tại A, M là trung điểm của BC
a, CM tam giác ABM = tam giác ACM
b, CM AM vuông góc với BC
c, Trên cạnh AB lấy điểm E, trên cạnh CA lấy điểm F, sao cho BE = CF. CM tam giác EBC = tam giác FCB
d, CM EF//BC
cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. C/m rằng:
a) tam giác ABC = tam giác ACE
b) tam giác AHB = tam giác AKC
c) BC // HK
Cho tam giác ABC cân tại B và D là trung điểm của AC vẽ DM vuông góc với AB tại M và trên tia DM lấy điểm N sao cho M là trung điểm của DN. Vẽ DP vuông góc với BC tại P và trên tia DP lấy điểm Q sao cho P là trung điểm của DQ. Chứng minh:
a) Tam giác MPD cân tại D.
b) Tam giác NQB cân tại B.
Bài 1: Cho tam giác ABC đều. Trên tia đối tia BC lấy điểm D, trên tia đối tia CB lấy điểm E sao cho BD=CE=BC
a) C/m: tam giác ACE cân
b) Tính góc DAE
Bài 2: Cho tam giác ABC cân tại A. Trên tia đối tia AC lấy điểm D sao cho AD = AC. C/m tam giác BCD vuông
Bài 3: Cho tam giác ABC cân tại A có góc A= 40 độ. Lấy điểm D khác phía B so với AC thoả mãn góc CAD=60 độ, góc ACD=80 độ. C/m BD vuông góc AC