Cho tam giác ABC vuông cân tại A. TPG của góc B và góc C cắt AC, AB lần lượt tại E, D. CD cắt BE tại I, tia AI cắt BC tại M.
a. Chứng minh BE=CD và AD=AE
b.Chứng minh \(\frac{AB+AC-BC}{2}
Cho \(\Delta\)ABC vuông cân tại A . Tia phân giác của góc B và góc C cắt AC , AB lần lượt tại E ,D . CD cắt BE tại I , tia AI cắt BC tại M.
a, Chứng minh BE = CD và AD = AE
b, Chứng minh AB + AC - BC / 2 < AM < AB + AC /2
c, Từ A và D kẻ các đường thẳng vuông góc với BE , các đường thẳng này cắt BC lần lượt tại K và H . Chứng minh rằng KC = KH
Help me. Mik đang cần gấp
1/Cho tam giác vuông cân ABC(AB=AC),tia phân giác các góc B và C cắt AC và AB lần lượt tại E,D
a.Chứng minh rằng:BE=CD và AD=AE
b.Gọi I là giao điểm của BE và CD,AI cắt BC ở M.Chứng minh rằng các tam giác MAB,MAC là các tam giác cân
c.Từ A và D vẽ các đường thẳng vuông góc với BE, các đường này cắt BC lần lượt tại K,H.Chứng minh rằng:KH=KC
2/Cho tam giác ABC vuông tại A,AB<AC,kẻ AH vuông góc với BC.Trên tia HC lấy điểm D sao cho HD=HA.Đường thẳng vuông góc với BS tại D cắt AC tại E
a/Chứng minh AE=AB
b/Gọi M là trung điểm của BE.Tính số đo góc AHM
c/Chứng minh AM>\(\frac{AB+AD+BD}{6}\)
Cho \(\Delta ABC\)vuông cân tại A. Tia phân giá của góc B và góc C cắt AC,AB lần lượt tại E,D. CD cắt BE tại I, tia AI cắt BC tại M. Từ A và D kẻ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt tại K,H. Chứng minh KC=KH.
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Cho tam giác ABC có AB<AC.Từ điểm D là trung điểm của BC vẽ đường vuông góc với tia phân giác của góc A tại H.Đường thẳng này cắt tia AB tại E và cắt AC tại F . Vẽ tia BMsong song với EF(M thuộc AC)
a)CM: tam giác ABM cân
b)CM:MF=BE=CF
c)Qua D kẻ đường thẳng vuông góc với BC cắt tai AM tại I CMR: IF vuông góc AC
Cho tam giác ABC có góc A = 60 độ .Tia phân giác của góc B và góc C lần lượt cắt cạnh AC và AB tại D và E . CMR :
a, BC = BD + CE
b, BE cắt CD tại I . CM tam giác DIE cân
1.cho tam giác ABC có AB<AC<BC . Tia phân giác của góc A cắt BC tại D , tia phân giác của góc B cắt AC tại E . Hai tia phân giác AD và BE cắt nhau tại I . So sánh BD và CD
2.cho tam giác ABC có AB<AC . Tia phân giác cắt BC ở D . Kẻ AH vuông góc với BC . Gọi M là trung điểm của BC . Chứng minh rằng tia AD nằm giữa hai tia AH và AM