\(\widehat{CAI}+\widehat{A_1}=90^0\)mà \(\Delta CAI\)vuông tại I có \(\widehat{CAI}+\widehat{C_1}=90^0\Rightarrow\widehat{A_1}=\widehat{C_1}\)
\(\Delta CAI,\Delta ABH\)lần lượt vuông tại I,H có CA = AB ; \(\widehat{C_1}=\widehat{A_1}\)(cmt)\(\Rightarrow\Delta CAI=\Delta ABH\left(ch-gn\right)\)=> CI = AH ; AI = BH
\(\Delta ABC\)vuông cân tại A có \(\widehat{B_2}=45^0\)và trung tuyến AM cũng là đường cao và là phân giác
\(\Rightarrow\widehat{MAB}=45^0\Rightarrow\Delta MAB\)vuông cân tại M => MA = MB
\(\Delta AMD,\Delta BHD\)lần lượt vuông tại M,H có \(\hept{\begin{cases}\widehat{A_2}+\widehat{D_1}=90^0\\\widehat{B_1}+\widehat{D_2}=90^0\\\widehat{D_1}=\widehat{D_2}\left(đđ\right)\end{cases}\Rightarrow\widehat{A_2}=\widehat{B_1}}\)
\(\Delta AIM,\Delta BHM\)có AI = BH ; AM = BM ; \(\widehat{A_2}=\widehat{B_1}\Rightarrow\Delta AIM=\Delta BHM\left(c.g.c\right)\)=> IM = HM (1)
\(\widehat{M_1}=\widehat{M_3}\)mà \(\widehat{M_1}+\widehat{M_2}=90^0\Rightarrow\widehat{M_3}+\widehat{M_2}=90^0\Rightarrow\widehat{IMH}=90^0\left(2\right)\)
Từ (1) và (2),ta có \(\Delta IMH\)vuông cân tại M nên \(HI=\sqrt{2}MI=2017\sqrt{2}\)