Trong không gian cho tam giác ABC vuông cân tại A, AB=a. Gọi H là trung điểm BC. Quay tam giác đó xung quanh trục AH, ta được một hình nón tròn xoay. Tính diện tích xung quanh S x q của hình nón.
Cho ∆ ABC vuông tại A có AB = 3, AC = 4. Quay tam giác quanh AB ta được hình nón tròn xoay có diện tích xung quanh S 1 và quay tam giác quanh AC ta thu được hình nón xoay có diện tích xung quanh S 2 . Tính tỉ số S 1 S 2
A. 4 3
B. 3 4
C. 4 5
D. 3 5
Trong không gian cho tam giác OIM vuông tại I, góc I O M ^ = 45 ° và cạnh I M = a . Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay. Tính diện tích xung quanh S x q của hình nón tròn xoay đó theo a
Trong không gian cho tam giác OIM vuông tại I, góc I O M ^ = 45 o và cạnh IM = a. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay. Tính diện tích xung quanh Sxq của hình nón tròn xoay đó theo a
Trong không gian cho tam giác OIM vuông tại I, I O M ⏜ = 45 0 và cạnh IM=a. Khi quay tam giác IOM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay. Khi đó diện tích xung quanh của hình nón tròn xoay đó bằng:
Tam giác ABC vuông cân đỉnh A có cạnh huyền là a. Quay tam giác ABC quanh trục AB thì đoạn gấp khúc ACB tạo thành hình nón (N). Diện tích xung quanh của hình nón (N) là:
A. a 2 2 4
B. a 2 2 2
C. πa 2 2 2
D. πa 2 2 4
Tam giác ABC vuông đỉnh A có AB = 2AC. Quay tam giác ABC quanh trục AB thì đoạn gấp khúc ACB tạo ra hình nón (N1) và quay tam giác ABC quanh trục AC thì đoạn gấp khúc ABC tạo ra hình nón (N2). Tỉ số diện tích xung quanh của hình nón (N1) và diện tích xung quanh của hình nón (N2) là:
A. 1/4
B. 1/2
C. 1
D. 2
Cho tam giác ABC vuông cân tại A đường cao AH=8cm. Tính diện tích xung quanh của hình nón nhận được khi quay tam giác xung quanh trục
Một hình nón tròn xoay mà thiết diện tạo bởi mặt phẳng chứa trục hình nón với hình nón là một tam giác vuông cân có diện tích bằng 4 a 2 (a>2). Tính diện tích xung quanh S x q của hình nón