a) bc\(^2\)= ab\(^2\)+ bc\(^2\)= 16+16=32
=> bc=\(\sqrt{32}\)
b) Xét tam giác ABD vuông tại D và tam giác ACD vuông tại D có:
Cạnh huyền AB=AC (tam giác ABC vuông cân tại A)
Góc nhọn B=C (tam giác ABC vuông cân tại A)
Do đó ABD=ACD (cạnh huyền-góc nhọn)
=>BD=CD (2 cạnh tương ứng)
=> D là trung điểm của BC
c)Ta có:
AB vuông góc với AC (gt)
DE vuông góc với AB (gt)
=> AC//DE
=> Góc DCA+EDC= 180\(^0\) (2 góc trong cùng phía)
=> EDA+ADC+DCA=180\(^0\)
Mà ADC=90\(^0\)
Nên EDA+DCA=90\(^0\)
Ta có: Tam giác ABC vuông cân tại A
=>ABC+ACB=90\(^0\)
mà ABC+BAD=90\(^0\)(tam giác ABD vuông tại D)
nên ACB=BAD
=> BAD=ABC (1)
Ta có: ABC+BDE=90\(^0\)
Mà BDE+EDA=90\(^0\)
Nên ABC=EDA (2)
Từ (1) và (2) suy ra: BAD=EDA
Tam giác AED có: BAD=EDA
DEA=90\(^0\)
Do đó tam giác ADE vuông cân tại E