a) Xét \(\Delta\)ABC vuông cân tại A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=4^2+4^2\)
\(\Rightarrow BC=\sqrt{4^2+4^2}\)
\(\Rightarrow BC=4\sqrt{2}\)
b) Ta có \(\Delta\)ABC cân tại A có AD là đường cao => AD đồng thời là đường trung tuyến \(\Delta\)ABC
=> AD là đường phân giác & cũng là đường cao \(\Delta\)ABC
=> D là trung điểm BC
c) Vì AD là đường phân giác \(\Delta\)ABC
=>\(\Rightarrow\widehat{BAD}=\widehat{CAD}=45^o\).Lại có \(\Delta\)ADE vuông tại E (DE vuông góc vs AC)
=> \(\Delta\)ADE vuông cân tại E
Tam giác ABC vuông cân ở A nên AB=AC.
Theo định lý Pythagoras ta có:
\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+4^2}=\sqrt{32}\)
AD là đường cao nên AD đồng thời là đường trung tuyến
Hướng 1:đường trung tuyến ứng với cạnh huyền
Khi đó tam giác vuông ABC có đường trung tuyến AD ứng với cạnh huyền BC nên \(AD=\frac{1}{2}BC=\frac{\sqrt{32}}{2}\)
Hướng 2:
Dùng định lý Pythagoras
Khi đó \(BD=\frac{1}{2}BC=\frac{\sqrt{32}}{2}\)
Theo định lý Pythagoras ta có:
\(AD^2+BD^2=AB^2\Rightarrow AD^2=\sqrt{AB^2-BD^2}=\sqrt{4^2-\frac{32}{4}}=\frac{\sqrt{32}}{2}\)