cho tam giác ABC vg tại A có AB = 12cm , AC = 16cm . Kẻ đường cao AH ( H thuộc BC ) . Trong tam giác ABC kẻ phân giác AD (D thuộc BC) Trong tam giác ADB kẻ phân giác DE (E thuộc AB ) , trong tam giác ADC kẻ phân giac DF ( F thuộc AC ).
a) c/m tam giác HBA đòng dạng vói tam giác ABC
b) tính BC,AH
c) cm EA/EB . DB/DC . FC/FA = 1
a) Xét tam giác HAB và tam giác ABC có:
Góc AHB= góc BAC (= 900 )
B> là góc chung
⇒ tam giác HAB ~ tam giác ABC (g.g)
b) Xét ΔΔ ABC vuông tại A: BC2 = AB2 + AC2
Hay BC2 = 122 + 162
BC2 = 144 + 256 = 400
=> BC = √400 = 20 (cm)
Ta có : Δ HAB ∼ Δ ABC
=> \(\frac{HA}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HA}{12}=\frac{12}{20}\)
=> AH = \(\frac{12.12}{20}=7,2\) cm
c)
Ta có
DE là tia phân giác của góc ADB trong tam giác DAB,
áp dụng t/c tia phân giác thì\(\frac{DA}{DB}=\frac{AE}{EB}\)
DG là tia phân giác cảu góc CDA trong tam giác CDA.
áp dụng t/c tia phân giác thì \(\frac{CD}{DA}=\frac{CF}{FA}\)
VẬy \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{DA}{DB}.\frac{DB}{DC}.\frac{CD}{DA}=1\)(dpcm)