Hướng dẫn:
+) ^IAB = ^IBC = ^IDB ( cùng chắn cung IB của đường tròn tâm O)
+) ^IDB = ^ICA ( BD//AC ; so le trong )
=> ^IAB = ^IBC = ^ICA
Hướng dẫn:
+) ^IAB = ^IBC = ^IDB ( cùng chắn cung IB của đường tròn tâm O)
+) ^IDB = ^ICA ( BD//AC ; so le trong )
=> ^IAB = ^IBC = ^ICA
Cho tam giác ABC. Vẽ đường tròn (O) đi qua A và tiếp xúc với BC tại B. Kẻ dây BD song song với AC. Gọi I là giao điểm của CD với đường tròn. Chứng minh: I B C ^ = I C A ^
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho tứ giác ABCD có các góc nội tiếp đường tròn . Gọi I bằng AC giao BD . H,K là trực tâm tam giác IAD ; tam giác IBC M;N là trung điểm AB;CD . P'Q là chân đường vuông góc kẻ từ I đến BC và AD. CMR : HK vuông góc MN ; MN đi qua trung điểm PQ
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
cho đường tròn (O) đường kính AB. Đường thẳng a tiếp xúc với (O) tại A. Gọi M đi đông trên (O). Tiếp tuyến của (O) tại M cắt a tại C. Gọi I là tâm đường tròn tiếp xúc với a tại C đi qua M. Kẻ CD là đường kính (I). GỌi K là giao điểm của OC với (I). CMR
a, K là trung điểm của OC
b, ĐƯờng thẳng qua D vuông góc với BC luôn qua 1 điểm cố định
Cho tam giác ABC vuông tại A, vẽ đường tròn tâm O đường kính AC. Qua C kẻ tiếp tuyến d với đường tròn tâm O. Kẻ OD vuông góc với BC (D thuộc BC ), đường thẳng OD cắt đường thẳng d tại E và cắt đường thẳng AB tại F. Gọi I là giao điểm của AE và BO
1) Chứng minh AE vuông góc với BO
2) Chứng minh AI.AE =2OD.OF
1/ Từ một điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm)
a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này
b/ Cho MO = 2R CMR tam giác MAB đều
2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn
3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp
4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn
Giải giúp mk vs mk đang cần gấp
Bài 1: Cho đường tròn tâm (O) dây AB cố định ( O không thuộc AB). P là điểm di động trên AB(P khác A và B). Qua A, P vẽ đường tròn tâm C tiếp xúc với đường tròn tâm (O) tại A. Qua B,P vẽ đường tròn tâm D tiếp xúc với đường tròn (O) tại B. Hai đường tròn (C) và (D) cắt nhau tại N (khác P).
a) Chứng minh góc ANP = góc BNP
b) Chứng minh góc PNO = 90 độ
Bài 2: Cho tam giác ABC có goác A= 60 độ, AB<AC. Trên cạnh AC lấy điểm E sao cho CE=AB. Gọi P, Q lần lượt là trung điểm của BC, AE. Tính góc AQP
Vẽ đường tròn (O) , điểm A nằm ở ngoài đường tròn. Kể các tiếp tuyến AB, AC với đường tròn. Gọi I là giao điểm của OA và BC. Kẻ dây DE của đường tròn (O) đi qua điểm I. Cmr:
a) tứ giác ADOE nội tiếp
b) góc BAD= góc EAC