Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
minh

.Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC

a) So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA

b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB

c) Chứng minh bất đẳng thức MA + MB < CA + CB

Trần Tuyết Như
30 tháng 3 2015 lúc 14:04

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

Trần Thị Diệu Na
29 tháng 3 2017 lúc 10:25

M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

Songoku Sky Fc11
10 tháng 6 2017 lúc 12:23

)tam giác IMA có:MA<IA+IM(theo bất đẳng thức tam giác)
Cộng MB vào 2 vế trên ta có:
MB+MA<MB+MI+MA
==> MB+MA< IB +IA(1)
b)tam giác ICB có:
IB<BC+IC
Cộng thêm IM vào bất đẳng thức trên ta được:
IB+IA<IA+IC+CB
==>IB+IA< CA +CB(2)
Từ (1) và (2) ta ==>MB+MA<CA+CB
2) 
a)ta có: 7 >5==>AC>AB==>góc ABC>ACB

phạm văn tuấn
5 tháng 4 2018 lúc 15:38

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

Nguyễn Tiến Thành
6 tháng 5 2020 lúc 16:38

a) M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

BI + IA < AC + BC

Nên MA + MB < CA + CB

Khách vãng lai đã xóa
PHONK LIÊN QUÂN
17 tháng 5 2023 lúc 8:50

Ko biết làm bạn nhé! Xin lỗi nhé!


Các câu hỏi tương tự
Võ Trang Nhung
Xem chi tiết
Trương Ty
Xem chi tiết
ông thị khánh vy
Xem chi tiết
Duy Nguyễn
Xem chi tiết
Hà Văn Phương
Xem chi tiết
Bảo My Yusa
Xem chi tiết
Bạch Dương năng động dễ...
Xem chi tiết
Trần Thị Diệu Na
Xem chi tiết
Shizuka Chan
Xem chi tiết