Cho tam giác nhọn DEF (DE<DF) nội tiếp đường tròn tâm O đường kính DK, tiếp tuyến tại K cắt tia EF ở H. Tia OH cắt DF tại G. Gọi I là trung điểm của EF
a, Chứng minh tứ giác OIKH nội tiếp.
b, Chứng minh tam giác ODG đồng dạng với tam giác IEK.
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao AD, BE, CF của tam giác ABC đồng quy tại K.
a) chứng minh các tứ giác AEKF và BCEF nội tiếp, định vị tâm của mỗi đường tròn ngoại tiếp tứ giác đó.
b) chứng minh EK là tia phân giác góc DEF và cho biết vị trí đặc biệt của K đối với tam giác DEF.
c) BC cắt EF tại S, SA cắt đường tròn (O) tại điểm thứ 2 là T. chứng minh tứ giác ATEF nội tiếp và tính góc ATK.
d) chứng minh AE.FT=AF.ET+AT.FE
Cho tam giác ABC nhọn ( AB<AC), đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh : AH vuông góc BC tại D và H là tâm đường tròn nội tiếp tam giác DEF. (đã làm được)
b) EF cắt BC tại K, FD cắt EB tại M, ED cắt FC tại N. CM: K,M,N thẳng hàng.( khó quá :P)
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
Cho tam giác ABC nhọn, đường tròn tâm O đường kính BC cắt AB tại F bà cắt AC tại E. BE và CF cắt nhau tại H
a/ Chứng minh AH vuông góc với BC tại D và H là tâm đường tròn nội tiếp tam giác DEF
b/ Hai đường thẳng EF và BC cắt nhau tại K; FD cắt EB tại M; ED cắt FC tại N. Chứng minh K, M, N thẳng hàng
Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
Cho tam giác ABC có độ dài ba cạnh AB = c, AC = b, BA = a và p là nửa chu vi của tam giác. Đường tròn tâm I nội tiếp tam giác lần lượt tiếp xúc với BC, AC và AB tại D, E và F
a, Chứng minh (I) có bán kính r = (p – a)tan B A C ^ 2
b, Với B A C ^ = α, tìm số đo của góc EDF theo α
c, Gọi H, K lần lượt là hình chiếu của B,C trên EF. Chứng minh: ∆BHF:∆CKE
d, Kẻ DP vuông góc vói EF tại P. Chứng minh: ∆FPB:∆CEP và PD là tia phân giác của góc B P C ^
Cho tam giác ABC ( AB<AC) nội tiếp đường tròn (O) , bán kính R , đường cao AD,BE,CF của tam giác ABC cắt nhau tại H.
Chứng minh:
1) tứ giác BFHD,BFEC nội tiếp đường tròn
2) FH là tia phân giác của góc DFE và H là tâm đường tròn nội tiếp tam giác DEF
3) Gọi M là trung điểm BC . Chứng minh OM//AD và tứ giác DMEF nội tiếp
4) Gọi N là giao điểm AD và BF , chứng minh 1/HN - 1/HD = 2/AH
5) Gọi K là giao điểm AD và đường tròn (O) , khác A . Chứng minh HK đối xứng qua BC
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Kẻ đường cao AH của tam giác ABC. Biết BC=20cm, AH/AC= 3/4
1. Tính AB và AC
2. Đường tròn đường kính AH cắt (O), AB, AC lần lượt tại M,D,E. DE cắt BC tại K. Chứng minh: A,M,K thẳng hàng
3. Chứng minh: B, D, E, C cùng thuộc một đường tròn