a) Ta có: \(AH\) là phân giác \(\widehat{EAF},AH\perp EF\rightarrow\Delta AEF\)cân tại \(A\)
b) Kẻ \(BG//AC,G\in EF\rightarrow\widehat{BGK}=\widehat{GKF}\)
Ta có: \(BK//EF\rightarrow\widehat{BKG}=\widehat{KGF}\)
Mà \(\Delta BKG,\Delta FGK\)chung cạnh \(KG\)
\(\rightarrow\Delta BKG=\Delta FGK\left(g.c.g\right)\)
\(\rightarrow BG=KF\)
Ta có: \(BG//AC\rightarrow\widehat{GBM}=\widehat{MCF}\)
Mà \(BM=MC\)vì \(M\)là trung điểm \(BC,\widehat{BMG}=\widehat{FMC}\)
\(\rightarrow\Delta BMG=\Delta CMF\left(c.g.c\right)\)
\(\rightarrow BG=CF\)
\(\rightarrow KF=CF\left(=BG\right)\)
c) Ta có: \(BG//AC\)
\(\rightarrow\widehat{BGE}=\widehat{AFE}=\widehat{AEF}=\widehat{BEG}\)
\(\rightarrow\Delta BGE\)cân tại \(B\rightarrow BE=BG\)
\(\rightarrow BE=CF\)
Mà \(AE=À,AE=AB+BE,AF=AC-C\)
\(\rightarrow AE+AF=AB+BE+AC-CF\)
\(\rightarrow2AE=AB+AC\)vì \(BE=CF\)
\(\rightarrow AE=\frac{AB+AC}{2}\)
help me mọi người ơi ai xong đầu tiên mk k cho
thank you a lot :)))))))))))