Cho tam giác ABC, trung tuyến AM. D là điểm nằm giữa BM. Vẽ đường thẳng qua D và // AM cắt AB và AC tại E và F. Qua A vẽ đường thẳng // BC cắt È tại K. CM
a) Hai tam giác FKA và AMC đồng dạng
b) K là trung điểm EF
c) Tổng DE + DF không đổi khi D di động trên BC
Cho tam giác ABC , đường trung tuyến AM.Qua điểm D thuộc cạnh BC,vẽ đường thẳng song song với AM,cắt AB và AC theo thứ tự ở E và F
a, Chứng minh rằng khi điểm D chuyển động trên cạnh BC thì tổng DE+DF có giá trị không đổi
b, Qua A vẽ đường thẳng song song với BC,cắt EF ở K.Chứng minh rằng K là trung điểm của EF
Cho tam giác ABC, trung tuyến AM. Qua D thuộc cạnh BC vẽ các đường thẳng song song với AM cắt AB, AC tại E và F.
a. CMR : DE + DF không đổi khi D di động trên BC
Cho tam giác ABC có AM là trung tuyến. Trên AM lấy điểm D sao cho D nằm giữa B và M. Qua D kẻ đường thẳng song song với AM cắt cạnh AB của tam giác ABC và cắt tia đối của tia AC lần lượt tại E và F.
a) chứng minh tam giác BED đồng dạng với tam giác BAM. Nếu cho biết BD=3cm, DM=2cm, DE=6 cm, tính AM
b) Chứng minh DE+DF=2AM
c)từ A kẻ AK song song với BC cắt È tại K, N là trung điểm EA, G là giao điểm AK và FN
Chứng minh FG=2/3 FN
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
Cho tam giác ABC, đường trung tuyến AM. Qua điểm D nằm trên cạnh BC, vẽ đường thẳng song song với AM cắt AB, AC lần lượt tại E, F.
a. CMR: DE + DF = 2AM.
b. Đường thẳng qua A song song với BC cắt EF tại N. CMR: N là trung điểm của EF.
Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt AB và AC lần lượt tại Evà F.
a, Chứng minh DE+DF=2AM.
b, Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh N là trung điểm của EF.
Cho tam giác ABC có AM là đường trung tuyến ( M thuộc BC ) , D là điểm nằm giữa B và M . Qua D kẻ đường thẳng d song song với AM , đường thẳng d cắt hai đường thẳng AB , AC thứ tự tại E và F . Kẻ AK song song với BC ( K thuộc DF )
1. Chứng minh hai tam giác KAE và MBA đồng dạng với nhau
2. Chứng minh K là trung điểm của EF
3. Gọi N là trung điểm của AK , O là giao điểm của DN và AB . Xác định vị trí của điểm D trên đoạn thẳng BM để OD : ND = 2 : 5 ?