Cho tam giác ABC, trên đường trung tuyến AD. Gọi G là điểm nằm giữa A và D sao cho AG/AD = 2/3. Tia BG cắt AC tại E, tia CG cắt AB tại F. Khẳng định nào sau đây sai?
(A) BG/EG = 2
(B) FG/CG = 2/3
(C) E là trung điểm của cạnh AC
(D) F là trung điểm của cạnh AB
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy AD = AB. Gọi E là trung điểm của BD. A) chứng minh AE là tia phân giác của góc BAC. B) Chứng minh AE vuông góc với BD. C) Tia AE cắt cạnh BC tại F. chứng minh BF = FD. D) Trên tia đối của tia BA lấy G sao cho BG = CD. Chứng minh G, F, D thẳng hàng.
Cho tam giác ABC và D, E, F theo thứ tự lần lượt là trung điểm của các cạnh BC, CA, AB. Trên trung tuyến AD người ta lấy điểm G nằm giữa A và D và AG=2GD. Chứng minh rằng:
a) 3 điểm B, G, E thẳng hàng và 3 điểm C, G, F thẳng hàng
b) BG=2GE; CG=2GF
Giải nhanh cho mk nhé, mk đang cần gấp ai đúng mà nhanh nhất mk tick cho😁😁😁
cho tam giác ABC vuông tại A có AB<AC. Vẽ tia AD là tia phân giác của góc BAC (D\(\in\)BC). Trên AC lấy điểm E sao cho AB=AE
a)Chứng minh rằng: tam giác ABD = tam giác AED
b)tia ED cắt AB tại F . chứng minh AC=DF
c) gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I chứng minh DI=2IH
Cho tam giac abc có ab=3cm;ac=4cm;bc=5cm
a)tam giác abc là tam giác gì ?Tại sao?
b)gọi m là trung điểm của ab trên tia đối của mc lấy D sao cho md=mc.Chứng minh tam giác amc=tam giác bmd và bd song song ac
c)Kẻ trung tuyến be của tam giac abc (e thuộc ac) cắt mc tại g; qua e kẻ ef song song vói ab (f thuộc bc) . Chứng minh ba điểm a g f thẳng hàng
d) chứng minh be^2+cm^2=5/4bc^2
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC cân tại A ( Â< 90 độ) vẽ đường cao AH a) C/m tam giác ABH = tam giác ACH b) Trên tia đối tia HA , lấy D sao cho HA=HD C/m AC=DC c) Gọi E là trung điểm AB, AH cắt CE tại G C/m đường thẳng BG đi qua trung điểm F của AC d) BF cắt DC tại K . C/m tam giác DAK vuông nhớ vẽ hình nha