Cho tam giác ABC ,trực tâm H là trung điểm của đường cao AD. Chứng minh rằng : \(\tan B\).\(\tan C\)=2
Cho tam giác ABC có trực tâm H là trung điểm của đường cao AD. Chứng minh rằng tanB.tanC=2?
Cho tam giác ABC nội tiếp (O). Vẽ hbh ACBD. Gọi H là trực tâm của tam giác ABD
a/ Chứng minh: H thuộc (O)
b/ CM: CH là đường kính
c/ Gọi H' là trực tâm của tam giác ABC. I là trung điểm AB.
Cm : I, H, H' thẳng hàng
d/ A', B' là đường cao của tam giác ABD. CMR: AD.BB'=BD.AA'
Cho tam giác ABC có D,E,F lần lượt là trung điểm của BC,CA,AB. G,H,I lần lượt là chân đường cao hạ từ đỉnh A,B,C. Trực tâm tam giác ABC là S. J,K,L theo thứ tự là trung điểm SA,SB,SC. Chứng minh rằng: 9 Điểm D,E,F,G,H,I,L,K,J cùng thuộc đường tròn. (Gợi ý: đường tròn đường kính JD)
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), đường cao AD và trực tâm H. Gọi I là trung điểm của BC, AO cắt BC tại R. Qua R kẻ đường thẳng song song với IH cắt AH tại K. Gọi J là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác JBC
Cho tam giác ABC các đường cao AD,BE,CF đồng quy tại H. Gọi K là giao điểm của EF và AH, M là trung điểm của AH chứng minh rằng K là trực tâm của tam giác BMC
cho tam giác abc nhọn .vẽ các đường cao bd ce gọi h là trực tâm của tam giác abc .a)chưng minh tứ giác bedc nội tiếp. b) gọi m là điểm đối xứng h qua bc chứng minh tứ giác abmc nội tiếp. c) gọi n là điểm đối xứng của h qua trung điểm I của bc chứng minh abnc nội tiếp
cho tam giác ABC nội tiếp đường tròn tâm O đường cao AK, H là trực tâm của tam giác, I là trung điểm cạnh AC, phân giác của góc A cắt đường tròn tại M.Chứng minh a) đường thẳng OM đi qua điểm M của BC b)góc KAM= góc MAO c) tam giác AHB đồng dạng tam giác NOI và AH=2ON