Cho tam giác ABC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BD.
a) Tìm điểm đối xứng với điểm B qua AM.
b) Gọi E là điểm bất kì của đường thẳng AM (E khác A). So sánh BA + AC và BE + EC
Cho tam giác ABC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BD
a) Tìm điểm đối xứng với điểm B qua AM
b) Gọi E là điểm bất kì của đường thẳng AM (E khác A). So sánh BA + AC và BE + EC
cho tam giác ABC . Trên tia đối cả tia AC lấy điểm D sao cho AD = AB . Gợi M là trung điểm của BD
a ) Tìm điểm đối xứng với điẻm B qua AM ( đã xong )
b ) Gọi là điểm bất kì trênđường thẳng AM ( E khác A ) . So sánh BA = AC và BE + EC
cho tam giác ABC . Trên tia đối cả tia AC lấy điểm D sao cho AD = AB . Gợi M là trung điểm của BD
a ) Tìm điểm đối xứng với điẻm B qua AM ( đã xong )
b ) Gọi là điểm bất kì trênđường thẳng AM ( E khác A ) . So sánh BA = AC và BE + EC
1. Cho tam giác ABC có M là trung điểm của AC trên tia đối của tia BA lấy điểm D sao cho AB = BD gọi E là giao điểm của DM với BC.
a) so sánh DE và EC ; ME và DM
b) Gọi N là trung điểm của DC chứng minh 3 điểm A,E,N thẳng hàng.
2. Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên cạnh AC lấy điểm E sao cho AE=1/3AC. Tia BE cắt CD tại M. Chứng minh M là trung điểm của CD
* Kẻ hình hộ mình vs
* mình đang cần gấp nha
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 1:Cho hình thang ABCD (AB//CD). Gọi E là giao điểm của hai đường thẳng AD và BC. Gọi M,N,P,Q theo thứ tự là các trung điểm của các đoạn thẳng AE,BE,AC,BD. CM: MNPQ là hình thang.
Bài 2: Cho tam giác đều ABC trên tia đối của tia AB lấy điểm D và trên tia đối của tia AC lấy điểm E sao cho AD=AE. Gọi M,N,P,Q theo thứ tự là các trung điểm của các đoạn thẳng BE,AD,AC và AB. CMR:
a) BCDE là hình thang cân.
b) CNEQ là hình thang.
c) MNP là tam giác đều.
Cho tam giác ABC (AB < AC), có AM là trung tuyến (M thuộc BC). Trên tia đối của tia MA lấy điểm E sao cho ME = MA, nối B với E.
a) Chứng minh rằng: BE = AC và BE // AC.
b) Gọi D là trung điểm của AB. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng A là trung điểm của CF.
c) So sánh độ lớn hai góc BAM và MAC