Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho A G = 1 3 A C . Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.
Chứng minh:
a) G là trọng tâm tam giác BCD;
b) ∆ B E D = ∆ F D E , từ đó suy ra EC = DF;
c) ∆ D M F = ∆ C M E ;
d) B, G, M thẳng hàng.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho AG = AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD. Chứng minh: a) G là trọng tâm tam giác BCD. b) , từ đó suy ra EC = DF
cho tam giác ABC trên tia đối của AB lấy D sao cho AD = AB . Lấy G thuộc AC sao cho AG =1/3 AC . Tia DG cắt BC tại E . Qua E vẽ đường thẳng song song với BD . Qua D vẽ dường thảng song song với BC 2 đường này cắt nhau tại F gọi M là giao điểm của EF vsf CD
a)chứng minh G là trọng tâm của tam giác BCD
b)chứng minh tam giác BED = tam giác FDE
Bài 3.Cho ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho AG = 1 3 AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.Chứng minh:
a) G là trọng tâm BCD;
b) EC = DF
c) DMF = CME;
d) B, G, M thẳng hàng.
Cho tam giác ABC , trên tia đối của tia AB lấy điểm D sao cho AD = AB . Lấy G thuộc cạnh AC sao cho AG =1/3 AC . Tia DG cắt BC tại E . Qua E vẽ đường thẳng song song với BD , qua D vẽ đường thẳng song song với BC , hai đường thẳng này cắt nhau tại F . Gọi M là giao điểm của EF và CD . Chứng minh
a ) G là trọng tâm tam giác BCD
b ) tam giác BED = tam giác FDE , từ đó suy ra EC = DF
c ) tam giác DMF = tam giác CME
d ) B , G , M thẳng hàng
Cho tam giác ABC. Trên tia đối của AB, lấy D sao cho AB=AD, lấy G thuộc AC sao cho AG=\(\frac{1}{3}\)AC, E là giao điểm của DE và BC. Qua E, vẽ đường thẳng song song với BD. Qua D, vẽ đường thẳng song song với BC. 2 đường thẳng này cắt nhau tại F. Chứng minh:
a)G là trọng tâm tam giác BCD
b)Tam giác BED= tam giác FDE, EC=DF
c)Tam giác DMF= tam giác CME
d)B,G,M thẳng hàng
Cho tam giac ABC ,trên tia đối của cạnh AB lấy D(AD=AB).Lấy G thuộc AC(AG=1/3AC).Tia DG cắt BC ở E.Qua E kẻ đường thẳng song song với BD,qua D kẻ đường thẳng song song với BC ,hai đường này cắt nhau ở F.Gọi M là giao điểm của EF vàCD.C/m B,G,M thẳng hàng
Cho tam giác ABC (AB nhỏ hơn AC). Đường thẳng đi qua B song song với AC cắt đường thẳng C song song với AB tại D. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Gọi K là giao điểm của AD và BC. Chứng minh rằng tam giác KDE cân.
Cho tam giác ABC có M là trung điểm của BC ( AB<AC ). Trên tia đối của MA lấy D sao cho MA=MD
a, Chứng minh: AC song song với BD
b, Trên nửa mặt phẳng bờ AD ko chúa điểm B vẽ tia Ax song song với BD. Trên tia Ax lấy E sao cho AE=BC.
Chưng minh :ba điểm E, C, D thẳng hàng
c, Qua M kẻ đường thẳng song song với AC cắt CD tại F
ChứNG Minh: EF= 1/2 AC