Cho Tam giác ABC có góc B=60 .Trên Cạnh AC Lấy D sao cho góc ABD=1/3 góc ABC trên cạnh AB lấy E sao cho góc ACE =1/3 ACB .Gọi F là giao điểm của BD và CE .a)tính góc ACE.
b) gọi I và k theo thứ tự là chân đg vuông góc kẻ từ F xuống BC Tại AC , G và H là 2 điểm lần lượt trên tia đối FI và FK .Sao cho I là trung điểm .K là trung điểm của FH.C.m tam giác CGH là tam giác đều.
c)c/m 3 điểm H,D,G thẳng hàng
Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?
Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?
Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?
Bài 4: Cho tam giác ABC cân tại A, dựng trung tuyến AM và phân giác AD, tính các góc của tam giác ABC biết BD = 2AM
Bài 5: Cho tam giác ABC có góc ABC = 45˚, góc ACB = 120˚, trên tia đối tia CB lấy điểm D sao cho CD = 2CB. Tính góc ADB ?
Bài 6: Tam giác ABC cân tại A có góc A = 20˚, các điểm M,N theo thứ tự thuộc các cạnh AB, AC sao cho góc BCM = 50˚, góc CBN = 60˚. Tính góc MNA ?
Bài 1: Cho tam giác ABC, trên cạnh AB lấy 2 điểm D và F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H và K.
a) CMR: GH, EK, AB cắt nhau tại 1 điểm
b) CMR: AB = 4HK
Bài 2: Cho tam giác ABC có BD và CE là phân giác, cắt nhau tại I. Gọi S là trung điểm BC, biết BI = 2IS.
a) CMR: tam giác ABC vuông
b) CMR: ID / IB = CD / CB
Bài 3: Cho tam giác ABC vuông cân tại A. Trên cạnh AB và AC lần lượt lấy các điểm D và E sao cho AD = AE. Qua A và D, kẻ các đường thẳng vuông góc với BE cắt BC thứ tự tại S và T. CMR: S là trung điểm của TC
Bài 1:Cho hình thang ABCD (AB//CD). Gọi E là giao điểm của hai đường thẳng AD và BC. Gọi M,N,P,Q theo thứ tự là các trung điểm của các đoạn thẳng AE,BE,AC,BD. CM: MNPQ là hình thang.
Bài 2: Cho tam giác đều ABC trên tia đối của tia AB lấy điểm D và trên tia đối của tia AC lấy điểm E sao cho AD=AE. Gọi M,N,P,Q theo thứ tự là các trung điểm của các đoạn thẳng BE,AD,AC và AB. CMR:
a) BCDE là hình thang cân.
b) CNEQ là hình thang.
c) MNP là tam giác đều.
Cho tam giác ABC. Trên cạnh AB và AC, theo thứ tự lấy các điểm E và D sao cho BE = CD. Gọi N, Q theo thứ tự là trung điểm của BD và CE. Gọi G và H lần lượt là giao điểm của NQ với AB và AC. CMR: tam giác AGH cân.
1/Cho tam giác ABC cân tại C , có góc ACB=80 độ .Trong tam giác ABC lấy điểm M sao cho MAB = 10 độ . Tính góc AMC ? 2/ Cho tam giác ABC vuông ở A có cạnh huyền BC bằng hai lần cạnh góc vuông AC , gọi M và N là hai điểm Trên cạnh BC và AC sao cho BM=CN CMR : Trung điểm của đoạn MN ở trên trung tuyến xuất phát từ điểm A của tam giác ABC 3/ Cho tam giác ABC gọi E,F theo thứ tự lần lượt là các trung điểm của AB và AC . Trên tia đối của tia FB ta lấy điểm P sao cho BF = PF . Trên tia đối của tia Bc ta lấy điểm Q sao cho QE = CE CMR a/ AP = AQ b/Ba điểm P,Q,A thẳng hàng c/ cm BQ song song AC và CP song song AB d/Gọi R là giao điểm của hai đường thẳng PC và QB Cm Chu vi tam giác PQB = 2 lần chu vi tam giác ABC e Cm BA đường thẳng AR, BP , CQ đồng qui
Bài 1: Lấy điểm M và N trên hai cạnh AB và BC của tam giác đều ABC sao cho MN//AC. Lấy điểm P trên cạnh AC sao cho góc CNP=60 độ. Chứng minh tứ giác AMNP là hình bình hành.
BÀi 2: Cho tam giác đều ABC. Lấy D thuộc AB, E thuộc AC, F thuộc BC sao cho góc EDF=60độ , và góc DFC=120 độ.
1) Tính số đo góc DEC
2) CHứng minh tứ giác DEFC là hình bình hành
Cho tam giác ABC cân tại A, có BC=2a. M là trung điểm BC. Lấy 2 diểm D và E theo thứ tự thuộc các cạnh AB, AC sao cho góc DME ko đổi
a. CMR BD.CE ko đổi
b. CMR CM là phân giác BCE
c. Cho tam giác ABC đều, CMR chu vi tam giác ADE ko đổi
Cho tam giác ABC, AC = 3/2AB. Lấy các điểm D và E tuỳ ý theo thứ tự trên các cạnh AB, AC sao cho BD = CE. Gọi K là giao điểm của các đường thẳng DE và BC. CMR: Tỉ số KD/KE không phụ thuộc vào cách chọn các điểm D và E.