Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Đức Thắng

Cho tam giác ABC , trên AC lấy E , qua E kẻ ED , EF lần lượt song song với BC , AB ( D thuộc AB ,  F thuộc BC ) . Biết diện tích tam giác ADE là 101 cm2 và diện tích tam giác EFC là 143 cm2 , tính diện tích tam giác ABC 

Trần Thị Loan
25 tháng 9 2015 lúc 21:18

A D B C E F

+) ED // BF; FE // BD => Tứ giác FBDE là hbh => DE = BF

+) Dễ có: tam giác ADE đồng dạng với ABC => \(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{DE}{BC}\right)^2\)  (*) ( tỉ số diện tích = bình phương tỉ số đồng dạng)

Tam giác CFE đồng dạng với tam giác CAB => \(\frac{S_{CFE}}{S_{ABC}}=\left(\frac{CF}{BC}\right)^2\)

=> \(\frac{S_{ADE}}{S_{ABC}}:\frac{S_{CFE}}{S_{ABC}}=\left(\frac{DE}{BC}\right)^2:\left(\frac{CF}{CB}\right)^2\) => \(\frac{S_{ADE}}{S_{CFE}}=\left(\frac{DE}{FC}\right)^2=\frac{101}{143}\) => \(\left(\frac{BF}{CF}\right)^2=\frac{101}{143}\)

=> \(\frac{BF}{CF}=\sqrt{\frac{101}{143}}\) => \(\frac{BF}{CF+BF}=\frac{\sqrt{101}}{\sqrt{143}+\sqrt{101}}\)=> \(\frac{BF}{BC}=\frac{\sqrt{101}}{\sqrt{143}+\sqrt{101}}=\frac{DE}{BC}\)

Thay vào (*) => \(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{\sqrt{101}}{\sqrt{101}+\sqrt{143}}\right)^2=\frac{101}{S_{ABC}}\) => S(ABC) =....

Trần Đức Thắng
25 tháng 9 2015 lúc 21:10

Câu này là của Ai Lê hay Quỳnh ?