Cho tam giác ABC có ba góc đèu nhọn , các đường BD và CE cắt nhau tại H . Gọi M,N,K lần lượt là trung điểm của AH,ED,BC:
a) CM : M,N,K thẳng hàng
b) Tính số đo góc MDN
c) AH cắt BC tại F . Kí hiệu S là diện tích . CM : \(\frac{S\Delta AED}{S\Delta ABC}=cos^2A\), \(\frac{SBDEC}{S\Delta ABC}=sin^2A\),\(\frac{S\Delta EDF}{S\Delta ABC}=1-cos^2A-cos^2B-cos^2C\)
d)CM : \(cos^2A+cos^2B+cos^2C< 1\), \(2< sin^2A+sin^2B+sin^2C< 3\)
Tìm giá trị của biểu thức S = \(\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-cotg^2a.cotg^2b\)
\(\cos^2a\cdot\cos^2B+\cos^2a\cdot\sin^2B+\sin^2a\)
Chứng minh biểu thức không phụ thuộc vào a,B
Cho tam giác nhọn ABC . chứng minh rằng:
a/ \(\sin^2A+\sin^2B+\sin^2C>2\)
b/\(\cos A+\cos B+\cos C\le\frac{3}{2}\)
c/\(\cot A+\cot B+\cot C\ge\sqrt{3}\)
cho tam giác nhon ABC có S=1(đvdt).CM diện tích DEF=\(sin^2A-cos^2B-cos^2C\)
(biết AD,BE,CF là các đường cao)
Chứng minh tam giác ABC cân tại C khi và chỉ khi:
\(\frac{\cos^2A+\cos^2B}{\sin^2A+\sin^2B}=\frac{1}{2}\) (cot2A + cot2B)
(cos^2a - sin^2b)/(sin^2a * sin^2b) - cot^2a * cot^2b
rút gọn
Cho tam giác ABC nhọn, kẻ các đường cao AH, BI, CK. Chứng minhn rằng:
a) \(S_{ABC}=\frac{1}{2}AB.AC.\sin A\)
b) \(S_{HIK}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
Các bạn giải nhanh giúp mình nha cầu xin các bạn đấy :(((
cho tam giác ABC vuông tại a và có AB=3, AC=4. kẻ đường cao AH. hạ HK vuông góc AB, HI vuông góc AC . Tính:
a,tính diện tích AKHI
b, P=\(\frac{\cos B\sin C+2\sin^2C-3\cos^2B}{^{ }\cos B+2sinC}\)