BC=a; AC=b; AB=c
Từ C dựng đường thẳng vuông góc với AB tại H
\(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}.\)
\(\Rightarrow a\left(a+b-c\right)+c\left(a+b-c\right)=b\left(a+b-c\right)+bc\)
\(\Rightarrow a^2+ab-ac+ac+bc-c^2=ab+b^2-bc+bc\)
\(\Rightarrow a^2-b^2-c^2+bc=0\) (*)
Ta có \(AB=c=AH+BH\Rightarrow c^2=AH^2+BH^2+2.AH.BH\) (**)
Xét tg vuông ACH có
\(AH^2=AC^2-CH^2=b^2-CH^2\)
Xét tg vuông BCH có
\(BH^2=BC^2-CH^2=a^2-CH^2\)
Thay giá trị của \(AH^2\) và \(BH^2\) vào (**) ta có
\(c^2=b^2-CH^2+a^2-CH^2+2.AH.BH=b^2+a^2-2.CH^2+2.AH.BH\) Thay vào (*) ta có
\(a^2-b^2-\left(b^2+a^2-2.CH^2+2.AH.BH\right)+bc=0\)
\(\Rightarrow-2.b^2+2.CH^2-2.AH.BH+bc=0\)
\(\Rightarrow-2\left(b^2-CH^2\right)-2.AH.BH+bc=0\)
\(\Rightarrow-2.AH^2-2.AH.BH+bc=0\)
\(\Rightarrow bc=2.AH\left(AH+BH\right)=2.AH.AB=2.AH.c\Rightarrow b=AC=2.AH\)
Xét tg vuông ACH có
\(\cos A=\frac{AH}{AC}=\frac{AH}{2.AH}=\frac{1}{2}\Rightarrow\widehat{A}=60^o\left(dpcm\right)\)