Bài 9: Tính chất ba đường cao của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC. Qua mỗi đỉnh A, B, C kẻ các đường thẳng song song với cạnh đối diện, chúng cắt nhau tạo thành tam giác DEF (h.17)

a) Chứng minh rằng A là trung điểm của EF

b) Các đường cao của tam giác ABC là các đường trung trục của tam giác nào ?

Nguyễn Ngọc Sáng
25 tháng 5 2017 lúc 8:21

a,

Theo bài ra ta có:

+)FE//BC

+)EC//BA hay ED//BA

+)AC//FB hay AC//FD

Khi đó:

+)\(\widehat{FBA}=\widehat{BAC}\)

+)\(\widehat{B\text{AF}}=\widehat{ABC}\)

Vì BF//AC

Xét \(\Delta FBA\)\(\Delta CAB\) có:

\(\left\{{}\begin{matrix}\widehat{B\text{AF}}=\widehat{ABC}\\BAchung\\\widehat{FBA}=\widehat{BAC}\end{matrix}\right.\) (cmt)

=> \(\Delta FBA\) = \(\Delta CAB\) (g.c.g)

=> FB=AC ( hai cạnh tương ứng )

Ta lại có:

+) \(\widehat{FAB}=\widehat{CEA}\)

+) \(\widehat{BFA}=\widehat{CAE}\)

( vì BF//CA và BA//CE )

=> \(\widehat{FBA}=\widehat{ACE}\)

Xét \(\Delta FBA\)\(\Delta ACE\) có:

\(\left\{{}\begin{matrix}\widehat{BFA}=\widehat{CAE}\\FB=AC\\\widehat{FBA}=\widehat{ACE}\end{matrix}\right.\) (cmt)

=> \(\Delta FBA=\Delta ACE\left(g.c.g\right)\)

=> FA=EA ( hai cạnh tương ứng )

Mà F;A;E thẳng hàng

=> A là trung điểm của EF

(đ.p.c.m)

b,

Các đường cao của tam giác ABC là các đường trung trực của tam giác DFE

Thảo Phương
5 tháng 4 2018 lúc 18:19
Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét ΔABC và ΔACE, ta có:

∠(ACB) = ∠(CAE) (so le trong, AE // BC)

AC cạnh chung

∠(CAB) = ∠(ACE) (so le trong, CE // AB)

Suy ra: ΔABC = ΔACE (g.c.g)

⇒ AE = BC (1)

Xét ΔABC và ΔABF, ta có:

∠(ABC) = ∠(BAF) (so le trong, AF // BC)

AB cạnh chung

∠(BAC) = ∠(ABF) (so le trong, BF // AC)

Suy ra: ΔABC = ΔBAF (g.c.g)

⇒ AF = BC (2)

Từ (1) và (2) suy ra: AE = AF

Vậy A là trung điểm của EF.

b. Kẻ AH ⊥ BC.

Ta có: EF // BC (gt) ⇒ AH ⊥ EF

Lại có: AE = AF (chứng minh trên)

Vậy đường cao AH là đường trung trực của EF.

Vì B là trung điểm DF và DF // AC nên đường cao kẻ từ đỉnh B của ΔABC là đường trung trực DF.

Vì C là trung điểm DE và DE // AB nên đường cao kẻ từ đỉnh C của ΔABC là đường trung trực của DE.


Các câu hỏi tương tự
Bảo Lê Huỳnh Quốc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minhchau Trần
Xem chi tiết
Thu Phương
Xem chi tiết
:D :D
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Tân Phú
Xem chi tiết